AILO Handbuch = Inhaltsverzeichnis v1.0

€ AILO Handbuch

Vollstandige Dokumentation aller Views, Funktionen und technischen Komponenten

28+ 12 8 2

Views Services DAOs Sprachen

B Teil 1: Views & Features

> 1.1 App Entry & Navigation

» AILO_APPApp.swift — App-Einstiegspunkt App/

+ ContentView.swift — Root-View mit Tab-Navigation

* NativeApp.swift — Platform-spezifische Anpassungen
» Tab-Navigation: Dashboard, Mail, Logs, Settings

» 1.2 Dashboard

» DashboardView.swift — Hauptiibersicht views/pashboard/
» Anstehende Erinnerungen (Upcoming Reminders)

« Zuletzt hinzugefugte Eintrdge (Recent Entries)

» App-Banner (Light/Dark Mode)

* Quick Actions zu Write, Speak, Logs

> 1.3 Logs System

* LogsView.swift — Auswahlhub (Write/Speak/List) views/Logs/

* LogsListView.swift — Liste aller Eintrage views/LogsList/

» TextLogDetailView.swift — Detail-Ansicht mit KI-Uberarbeitung
* Volltextsuche Uber alle Logs

» Swipe-Actions: Mail, Play, Delete

* Audio-Player Integration

> 1.4 Schreiben (Write)

* SchreibenView.swift — Neue Text-Eintrage views/Schreiben/
« Titel & Kategoriezuweisung

» Tags-System (mehrere Tags pro Eintrag)

* Erinnerungen mit DatePicker

» E-Mail-Import Dialog

* Clipboard-Integration

> 1.5 Sprechen (Speak)

» SprechenView.swift — Audio-Aufnahme views/sprechen/
* Live-Transkription wahrend Aufnahme

+ AudioRecorder-Klasse (AVFoundation)

* LiveTranscriber-Klasse (SFSpeechRecognizer)

* Pegel-Anzeige (Level Meter)

» Pause/Resume Funktionalitat

» Silence Detection fir automatische Chunks

Seite 1 von 8

AILO Handbuch = Inhaltsverzeichnis v1.0

» 1.6 Mail Feature

* MaillnboxView.swift — Posteingang views/Mail/
» MessageDetailView.swift — E-Mail-Ansicht

» ComposeMailView.swift — Neue E-Mail verfassen
+ SchreibenMailView.swift — Mail-Import fiir Logs
« Filter: Alle / Ungelesen / Markiert

* Sortierung: Neueste / Nach Absender

* Aktionen: Reply, Reply All, Forward

* Als Log speichern (Create Log)

* Flag/Unflag, Read/Unread Toggle

* Technische Header anzeigen

* Anhange-Verwaltung

» 1.7 Konfiguration (Settings)

* ConfigView.swift — Einstellungen-Hauptseite views/configuration/
» AlManagerView.swift — KI-Provider verwalten

« AlEditor.swift — Provider bearbeiten

* PrePromptManager.swift — Pre-Prompts verwalten

» PrePromptEditor.swift — Pre-Prompt bearbeiten

* PrePromptCatalogView.swift — Hierarchischer Katalog

* MailManager.swift — E-Mail-Konten verwalten

+ MailEditor.swift — Konto-Details bearbeiten

+ Categories.swift — Kategorien verwalten

> 1.8 Pre-Prompt Katalog System

» PrePromptCatalogView.swift — Hierarchische Ordnerstruktur
* PrePromptPicker.swift — Auswahl-Dialog

* PrePromptCatalogPickerSheet.swift — Sheet-Variante

* RecipeEditor — Rezept-Kombinationen

» CookbookView — Kochbuch-Verwaltung

» Export/Import Funktionalitat (JSON)

« Standard-Kategorien: Mail, Reply, Forward, Analyze, Notes

» 1.9 Shared Components

» MailComposer.swift — E-Mail Compose Sheet views/Shared/
+ AudioPlayerView.swift — Audio-Wiedergabe

* SelectionCard.swift — Kachel-Komponente

* LabeledSlider.swift — Slider mit Label

» MarkdownHelper.swift — Markdown-Rendering

Seite 2 von 8

AILO Handbuch = Inhaltsverzeichnis v1.0

® Teil 2: Services & Business Logic

» 2.1 Kl-Integration

* AlClient.swift — HTTP-Client fiir KI-APIs services/A1/
* OpenAl-kompatible API (/v1/chat/completions)

* Ollama API (/api/chat, /api/generate)

» Automatischer Fallback zwischen Providern

« Error Handling mit lokalisierten Meldungen

» 2.2 Mail Services

» MailRepository.swift — Zentrale Schnittstelle services/Mail/Sync/

* MailSyncEngine.swift — 5-Phasen Synchronisation

* MailProcessorAdapter.swift — Engine-Repository Bridge

* ViewportSyncManager.swift — Viewport-basiertes Laden

* MailSendReceive.swift — IMAP/SMTP Transport Helpers/utilities/
» MailHealthMonitor.swift — Verbindungs-Health-Check

+ FolderDiscoveryService.swift — Ordner-Erkennung

» 2.3 IMAP Implementation

* IMAPConnection.swift — Verbindungsmanagement services/Mail/IMAP/

* IMAPCommands.swift — IMAP-Befehle

* IMAPParsers.swift — Response-Parsing

* Unterstitzte Befehle: LOGIN, SELECT, FETCH, SEARCH, LIST, STORE
* ENVELOPE, BODYSTRUCTURE, FLAGS Parsing

» TLS/StartTLS Support

> 2.4 SMTP Implementation

* SMTPAbstractions.swift — Abstrakte Interfaces services/Mail/smTp/
* SMTPClient.swift — SMTP-Verbindung

* MailSendService.swift — Outbox-Verwaltung

« S/IMIME Signing Support

» 2.5 Pre-Prompt Management

* PrePromptCatalogManager.swift — Singleton Manager Helpers/utilities/
* Hierarchische Menustruktur (PrePromptMenultem)

* Preset-Verwaltung (AlPrePromptPreset)

* Rezept-System (PrePromptRecipe)

» Kochbuch-Struktur (Cookbook, RecipeMenultem)

* Migration von Legacy-Daten

 UserDefaults Persistierung

» 2.6 Audio & Speech

* AudioRecorder (in SprechenView) — AVFoundation views/sprechen/
* LiveTranscriber — SFSpeechRecognizer Integration

» Chunk-basierte Transkription

« Silence Detection (Stille-Erkennung)

» On-Device Recognition Support

» 2.7 Sicherheit
» KeychainService.swift — Sichere Speicherung services/

Seite 3 von 8

AILO Handbuch = Inhaltsverzeichnis v1.0

* API-Keys verschlusselt
* E-Mail-Passworter verschlisselt
* SIMIME Zertifikate

Seite 4 von 8

AILO Handbuch = Inhaltsverzeichnis v1.0

Bl Teil 3: Data Access Layer (DAOs)

» 3.1 Database Schema

* MailSchema.swift — Tabellen-Definitionen patabase/schema/

* Tabellen: accounts, folders, msg_header, msg_body, attachments, outbox
* Blob Storage: blob_meta, mime_parts, render_cache

+ SQLite als Datenbank-Engine

> 3.2 DAO Implementations

* BaseDAO.swift — Basis-Klasse fir alle DAOs patabase/DA0/
» AccountDAO.swift — Account-Verwaltung

* FolderDAOQ.swift — Ordner-Verwaltung

» MailReadDAO.swift — Lese-Operationen

* MailWriteDAO.swift — Schreib-Operationen

+ AttachmentDAO.swift — Anhang-Verwaltung

* OutboxDAO.swift — Outbox-Queue

* DAOFactory.swift — Factory Pattern

» 3.3 DAO Utilities

* DAOHelpers.swift — SQLite Extensions

* DAOPerformanceMonitor — Query-Timing

* DAOTransactionManager — Batch-Operationen
» SQLQueryBuilder — Query-Konstruktion

* DAOSchemaValidator — Schema-Validierung

» 3.4 Datenmodelle

* LogEntry.swift — Text/Audio Log Database/Models/
* AccountEntity — E-Mail-Account

* FolderEntity — Ordner

» MessageHeaderEntity — E-Mail-Header

* MessageBodyEntity — E-Mail-Body

* AttachmentEntity — Anhang

» AlPrePromptPreset — Pre-Prompt Daten

* PrePromptMenultem — Menu-Struktur

* PrePromptRecipe — Rezept

» Cookbook — Kochbuch

» 3.5 DataStore (Logs)

+ DataStore.swift — ObservableObject patabase/store/
+ JSON-basierte Persistierung

* CRUD-Operationen fir LogEntry

* Audio-URL Management

Seite 5 von 8

AILO Handbuch = Inhaltsverzeichnis v1.0

\ Teil 4: Helpers & Parser

> 4.1 IMAP/MIME Parser

* IMAPParsers.swift - ENVELOPE, FLAGS, LIST Parsing services/Mail/IMAP/
* RFC2047Decoder — Encoded-Word Dekodierung Helpers/Parsers/

* RFC2047Test.swift — Parser-Tests

* UTF-8 / 1SO-8859-1 Handling

* Quoted-Printable / Base64 Dekodierung

> 4.2 Utilities

* MailTransportStubs.swift — Transport-Abstraktion Helpers/utilities/
« CancellationToken.swift — Task-Abbruch

» MarkdownHelper.swift — MD-Rendering

* PrePromptCatalogManager.swift — Katalog-Verwaltung

» PrePromptPicker.swift — Picker Ul

& Teil 5: Konfiguration

» 5.1 Settings Keys

* SettingsKeys.swift — UserDefaults Keys configuration/settings/
*» kAlServerAddress, kAlServerPort, kAIAPIKey, kAIModel

* kAlPresetsKey, kAlSelectedPresetKey

* kPrePromptMenuKey, kPrePromptRecipesKey

» kCookbooksKey, kRecipeMenuKey

» kCategories

» kMicSensitivity, kSilenceThreshold, kChunkSeconds

» kSpeechLang

» 5.2 Lokalisierung

° Localizable.strings (de) Configuration/Language/de.lproj/
° Localizable.strings (en) Configuration/Language/en.lproj/
» Key-Pattern: feature.view.element[.state|action|hint]

» ~500 lokalisierte Strings pro Sprache

» 5.3 Mail Account Configuration

* MailAccountConfig — Account-Struktur

* IMAP: Host, Port, Encryption, Username, Password
* SMTP: Host, Port, Encryption, Auth Method

« Sync Limits: Initial, Refresh, Incremental

* Special Folders: Inbox, Sent, Drafts, Trash, Spam

« S/IMIME Signing Configuration

Seite 6 von 8

X Teil 6: Technologie-Stack

@ Plattform

+i0S 16.0+

* macOS 13.0+ (Catalyst)
 Swift 5.9+

» Xcode 15.0+

M Datenbank

» SQLite3 (direkt)

* DAO Pattern

* JSON fur Logs

* UserDefaults fir Settings

$: Speech

» Speech Framework

» SFSpeechRecognizer
» On-Device Recognition
* Live Transcription

@ Kl-Integration

* OpenAl API (v1/chat)

* Ollama API

» Custom Endpoints

« Stream Support (geplant)

AILO Handbuch

@ Ul Framework
* SwiftUl (100%)
» Combine fiir Reactive

* NavigationStack
* @Observable (i0S 17+)

€ Audio

* AVFoundation

* AVAudioRecorder
* AVAudioSession
* m4a Format

& Netzwerk

* URLSession (HTTP)

* IMAP (Custom Implementation)
* SMTP (Custom Implementation)
» TLS/StartTLS

4 Sicherheit

+ Keychain Services
» S/IMIME Signing

* Lokale Speicherung
+ Keine Cloud-Sync

Seite 7 von 8

Inhaltsverzeichnis v1.0

AILO Handbuch

[Teil 7: Projektstruktur

AILO APP/

— App/ # App Entry Point
—— AILO APPApp.swift

—— ContentView.swift

— NativeApp.swift

— Views/ # UI Layer
— Dashboard/DashboardView.swift
— Logs/LogsView.swift
— LogsList/LogsListView.swift
— Schreiben/SchreibenView.swift
— Sprechen/SprechenView.swift
— Mail/
— MailInboxView.swift
— MessageDetailView.swift
L— ComposeMailView.swift
— Configuration/
— ConfigView.swift
— AIManagerView.swift
—— PrePromptManager.swift
— MailManager.swift
L— Shared/
MailComposer.swift
AudioPlayerView.swift

— Services/ # Business Logic

— AI/AIClient.swift

— Mail/
Sync/MailRepository.swift
IMAP/IMAPConnection.swift
SMTP/SMTPAbstractions.swift

L— KeychainService.swift

— Database/ # Data Layer
— Schema/MailSchema.swift
—— DAO/

BaseDAO.swift

AccountDAO.swift

DAOFactory.swift

— Models/LogEntry.swift
L— Store/DataStore.swift

—— Configuration/ # Settings & 1i18n
Settings/SettingsKeys.swift
Language/
de.lproj/Localizable.strings
en.lproj/Localizable.strings

—— Helpers/ # Utilities
Parsers/RFC2047Decoder.swift
Utilities/PrePromptCatalogManager.swift

L— Resources/ # Assets
Assets.xcassets
Info.plist

AILO Handbuch — Inhaltsverzeichnis v1.0
Erstellt: Dezember 2025

Seite 8 von 8

Inhaltsverzeichnis v1.0

AILO Handbuch | 1.1 App Entry & Navigation

B 1.1 App Entry & Navigation

App-Einstiegspunkt und Root-Navigation des AlILO-Systems

[Pfad: AILO_APP/App/
N Technologie: SwiftUl, @main, NavigationStack

Ubersicht

Der App Entry Point bildet das Fundament der AILO-Applikation. Er initialisiert alle
notwendigen Services, konfiguriert die Hauptnavigation und stellt die grundlegende
Tab-Struktur bereit.

Dateien

AILO_APPApp.swift
Der Haupt-Einstiegspunkt der iOS-Applikation mit @main-Attribut.

Funktionen

 App-Lifecycle Management via @main

* WindowGroup fur Multi-Window Support
» Environment Objects Initialisierung

» DataStore Injection flr Logs-System

* App-weite State-Verwaltung

ContentView.swift

Die Root-View mit der zentralen Tab-Navigation der Applikation.

Tab-Struktur

Tab Icon Beschreibung
Dashboard % house.fill Hauptiibersicht mit Quick Actions
Mail envelope.fill E-Mail-Posteingang & Verwaltung
Logs ~ doc.text.fill Text- & Audio-Eintrage (Write/Speak)
Settings ® gearshape.fill Konfiguration & Einstellungen
NativeApp.swift

Platform-spezifische Anpassungen fur iOS und macOS (Catalyst).

Funktionen

* Plattform-Erkennung (iOS vs. macQOS)
* Screen-Size Anpassungen

Seite 1

AILO Handbuch | 1.1 App Entry & Navigation

» Keyboard-Handling Unterschiede
* Platform-spezifische Ul-Elemente

Technischer Hinweis

Die Tab-Navigation nutzt NavigationStack (iOS 16+) fir moderne Navigation mit
programmatischer Steuerung und Deep-Link Support.

Abhangigkeiten

Der App Entry Point initialisiert folgende zentrale Komponenten:

Komponente Funktion
DataStore Logs-Verwaltung als EnvironmentObject
MailRepository Mail-Synchronisation & IMAP/SMTP
AIClient Kl-Provider Integration (OpenAl/Ollama)
KeychainService Sichere Speicherung von Credentials

AILO Handbuch — Kapitel 1.1
Version 1.0 | Dezember 2025

Seite 2 | AILO v1.0 | Dezember 2025

AlILO Handbuch | 1.2 Dashboard

% 1.2 Dashboard

Zentrale Ubersichtsseite mit Quick Actions und aktuellen Informationen

[7 Pfad: AILO_APP/Views/Dashboard/

* Datei: DashboardView. swift

Ubersicht

Das Dashboard ist die zentrale Anlaufstelle der AILO-App nach dem Start. Es bietet
einen schnellen Uberblick Uber anstehende Aufgaben, kurzlich erstellte Eintrage und
ermoglicht den direkten Zugriff auf die Hauptfunktionen tber Quick Actions.

Ul-Komponenten

App-Banner

Prominentes Branding-Element im oberen Bereich des Dashboards.
* AILO Logo mit Gradient-Effekt
* Automatische Anpassung an Light/Dark Mode
* Responsive GroRenanpassung

Quick Actions

Schnellzugriff-Kacheln fur die wichtigsten Funktionen der App.

Aktion Icon Ziel
Write . pencil SchreibenView — Neuer Text-Eintrag
Speak € mic.fill SprechenView — Audio-Aufnahme
Logs] list.bullet LogsListView — Alle Eintrage

Anstehende Erinnerungen

Zeigt Eintrage mit gesetzten Erinnerungen, die in naher Zukunft fallig sind.

Funktionen

* Filterung — Nur Eintrage mit reminderDate in der Zukunft

» Sortierung — Chronologisch nach Falligkeit

* Limit — Maximal 5 Eintrdge angezeigt

* Navigation — Tap 6ffnet TextLogDetailView

* Leer-State — Hinweis wenn keine Erinnerungen vorhanden

Seite 1

AlILO Handbuch | 1.2 Dashboard

Zuletzt hinzugefiugte Eintrage
Kompakte Ubersicht der neuesten Log-Eintréage fiir schnellen Zugriff.

Anzeige-Elemente

* Titel — Haupttext des Eintrags

» Kategorie-Badge — Farbcodierte Kategorie-Anzeige
* Datum — Erstellungsdatum formatiert

* Typ-lcon — Text (/) oder Audio (%)

* Limit — Maximal 10 neueste Eintrage

Technische Details

State Management

Property Beschreibung
@EnvironmentObject DataStore fiir Zugriff auf alle Log-Eintrage
@state Lokaler Ul-State fir Navigation und Selektion
Computed Properties Gefilterte Listen fur Reminders & Recent Entries

« Dark Mode Support

Das Dashboard passt sich automatisch an das System-Erscheinungsbild an. Das App-
Banner verwendet @Environment (\.colorScheme) flir dynamische Farbanpassungen.

Layout-Struktur

Das Dashboard verwendet eine ScrollView mit vertikalem VStack fur optimale
Scrollbarkeit auf allen Gerategrof3en.

Bereich Komponente
Header App-Banner mit Logo
Quick Actions HStack mit SelectionCard-Komponenten
Reminders Section Section mit ForEach-Liste
Recent Entries Section Section mit NavigationLink-Liste

AILO Handbuch — Kapitel 1.2
Version 1.0 | Dezember 2025

Seite 2 | AILO v1.0 | Dezember 2025

AILO Handbuch | 1.3 Logs System

1.3 Logs System

Verwaltung und Anzeige von Text- und Audio-Eintragen

[7 Pfade: Views/Logs/, Views/LogsList/

* Dateien: LogsView.swift, LogsListView.swift, TextLogDetailView.swift

Ubersicht

Das Logs System ist das Herzstlck der AILO-App fur die Erfassung und Verwaltung
von Notizen. Es unterstutzt sowohl Text-Eintrage als auch Audio-Aufnahmen mit
Live-Transkription und bietet umfangreiche Such- und Bearbeitungsfunktionen.

Komponenten

LogsView.swift

Der zentrale Auswahlhub fur alle Log-bezogenen Aktionen.

Navigationsoptionen

Option Icon Beschreibung
Write ° pencil Neuen Text-Eintrag erstellen
Speak 2 mic.fill Audio-Aufnahme mit Transkription
List 1 list.bullet Alle Eintrage anzeigen und durchsuchen
LogsListView.swift

Ubersichtliche Listendarstellung aller gespeicherten Eintrage mit Such- und
Filterfunktionen.

Volltextsuche

* Durchsucht Titel, Inhalt und Tags

» Case-insensitive Suche

* Echtzeit-Filterung wahrend der Eingabe
* Highlight von Suchtreffern (geplant)

Swipe-Actions

Aktion Farbe Funktion
Mail Blau Eintrag per E-Mail versenden
U Play Grin Audio-Aufnahme abspielen (nur Audio-Logs)
L Delete Rot Eintrag 16schen (mit Bestatigung)

Seite 1

AILO Handbuch | 1.3 Logs System

TextLogDetailView.swift

Detaillierte Ansicht eines einzelnen Eintrags mit Bearbeitungs- und Kl-Funktionen.

Anzeige-Elemente

* Titel — Bearbeitbar mit Inline-Editor

* Inhalt — Vollstandiger Text mit Markdown-Rendering
» Kategorie — Badge mit Farbcodierung

* Tags — Chip-Liste aller zugewiesenen Tags

* Erinnerung — Datum und Uhrzeit falls gesetzt

* Erstellungsdatum — Formatierte Zeitangabe

Kl-Uberarbeitung

@ Kl-Integration

[Die Ki-Uberarbeitung nutzt den konfigurierten Al-Provider (OpenAl/Ollama) mit Pre-Prompts
aus dem Katalog. Der Benutzer kann das Ergebnis ibernehmen, verwerfen oder erneut
generieren.

* Pre-Prompt Auswahl — Aus hierarchischem Katalog

* Verarbeitung — Asynchron mit Ladeanzeige

« Ergebnis-Vorschau — Diff-Ansicht Original vs. Uberarbeitet
» Aktionen — Ubernehmen, Verwerfen, Neu generieren

Audio-Player Integration

Far Audio-Logs steht ein integrierter Player mit erweiterten Funktionen zur
Verfugung.

Feature Beschreibung
Play/Pause Wiedergabe starten und pausieren
Fortschrittsbalken Visuelle Anzeige und Seek-Funktion
Zeitanzeige Aktuelle Position / Gesamtdauer
Skip-Buttons +15 Sekunden vor/zurtick springen
Geschwindigkeit 0.5x, 1x, 1.5%, 2x Wiedergabe

Technischer Hinweis

udio-Dateien werden im m4a-Format gespeichert und Uber AVAudioPlayer
iedergegeben. Die URLs werden im DataStore referenziert.

Seite 2 | AILO v1.0 | Dezember 2025

AILO Handbuch | 1.3 Logs System

Datenmodell: LogEntry

Zentrale Datenstruktur fur alle Log-Eintrage im System.

Property Typ Beschreibung
id uuID Eindeutige Identifikation
title String Titel des Eintrags
content String Hauptinhalt / Transkription
category String? Optionale Kategorie-Zuweisung
tags [String] Liste von Tags
reminderDate Date? Optionale Erinnerung
audioURL URL? Pfad zur Audio-Datei (nur Audio-Logs)
createdAt Date Erstellungszeitpunkt

AILO Handbuch — Kapitel 1.3

Seite 3

AILO Handbuch | 1.4 Schreiben (Write)

. 1.4 Schreiben (Write)

Erstellen neuer Text-Eintrage mit Kategorien, Tags und Erinnerungen

[7 Pfad: AILO_APP/Views/Schreiben/

* Datei: SchreibenView. swift

Ubersicht

Die SchreibenView ermoglicht das Erstellen neuer Text-Eintrage in der AILO-App.
Sie bietet ein umfassendes Formular mit Titel, Inhalt, Kategoriezuweisung, Tags-
System, Erinnerungsfunktion sowie Import-Mdglichkeiten aus E-Mail und
Zwischenablage.

Formularfelder
Titel

Einzeiliges Textfeld fur die Uberschrift des Eintrags.

* Pflichtfeld — Muss ausgefullt werden

* Placeholder — "Titel eingeben..."

* Validierung — Mindestens 1 Zeichen

* Keyboard — Default mit Auto-Capitalization

Inhalt

Mehrzeiliges Textfeld fur den Hauptinhalt des Eintrags.

» TextEditor — SwiftUl-native Komponente

» Unbegrenzte Lange — Scrollbar bei Uberlauf

* Markdown-Support — Wird in Detail-Ansicht gerendert
* Minimale Hohe — 200pt flr bessere Bedienbarkeit

Kategoriezuweisung

Dropdown-Auswahl aus den benutzerdefinierten Kategorien.
Eigenschaft Beschreibung

Komponente Picker mit .menu Style

Datenquelle UserDefaults (kCategories)

Standard "Allgemein" als Fallback

Farbcodierung Jede Kategorie hat zugewiesene Farbe

Seite 1

AILO Handbuch | 1.4 Schreiben (Write)

Tags-System
Flexibles Tagging-System fur erweiterte Kategorisierung und Suche.

Funktionen

* Mehrfach-Tags — Beliebig viele Tags pro Eintrag

» Eingabe — TextField mit Return-Bestatigung

* Chip-Darstellung — Tags als lI6schbare Chips

* Duplikat-Priifung — Keine doppelten Tags erlaubt

* Vorschlage — Basierend auf existierenden Tags (geplant)

+ Ul-Verhalten

Tags werden als horizontale FlowLayout-Chips angezeigt. Jeder Chip hat ein x-Symbol zum
Entfernen. Das Eingabefeld erscheint am Ende der Chip-Reihe.

Erinnerungen
Optionale Erinnerungsfunktion mit Datum und Uhrzeit.

Element Beschreibung
Toggle Aktiviert/Deaktiviert die Erinnerung
DatePicker Auswahl von Datum und Uhrzeit
Minimum Aktuelles Datum (keine Vergangenheit)
Format Lokalisiert (DE/EN)
Import-Funktionen

E-Mail-Import Dialog
Importiert Inhalte aus E-Mails als neuen Log-Eintrag.

* Ausloser — Toolbar-Button mit envelope.open Icon

» Sheet-Prasentation — Modal Uber SchreibenMailView
* Auswahl — E-Mail aus Posteingang wahlen

* Import-Optionen — Betreff als Titel, Body als Inhalt

» Anhange — Optional mit importieren (geplant)

Clipboard-Integration

Schnelles Einfugen von Inhalten aus der Zwischenablage.

* Button — Toolbar mit doc.on.clipboard Icon

* Verhalten — Fugt am Cursor oder ans Ende ein
* Unterstiitzte Formate — Plain Text, Rich Text
* Feedback — Kurze Vibration bei Erfolg

Seite 2 | AILO v1.0 | Dezember 2025

AILO Handbuch | 1.4 Schreiben (Write)

Technischer Hinweis

Der Clipboard-Zugriff erfolgt Uber UIPasteboard.general. Ab iOS 16 wird der Benutzer bei
erstem Zugriff zur Bestatigung aufgefordert.

State Management

Property Typ Beschreibung
@State title String Titel des Eintrags
@State content String Hauptinhalt des Eintrags
@State category String Ausgewahlte Kategorie
@State tags [String] Liste der Tags
@State hasReminder Bool Erinnerung aktiviert?
@State reminderDate Date Gewahltes Erinnerungsdatum
@State showMailImport Bool Mail-Import Sheet anzeigen

Speichern-Aktion

Der Speichervorgang erstellt einen neuen LogEntry und persistiert ihn Gber den
DataStore.

Ablauf

+ 1. Validierung — Titel muss ausgefullt sein

* 2. LogEntry erstellen — Mit UUID, Zeitstempel und allen Feldern
+ 3. DataStore.add() — Persistierung in JSON-Datei

* 4. Navigation zuriick — dismiss() nach erfolgreichem Speichern
* 5. Feedback — Optionale Erfolgsbestatigung

AILO Handbuch — Kapitel 1.4
Version 1.0 | Dezember 2025

Seite 3 | AILO v1.0 | Dezember 2025

AILO Handbuch | 1.5 Sprechen (Speak)

€ 1.5 Sprechen (Speak)

Audio-Aufnahme mit Live-Transkription und intelligenter Stille-Erkennung

[Pfad: AILO_APP/Views/Sprechen/
* Datei: SprechenView.swift

“\ Frameworks: AvFoundation, Speech Framework

Ubersicht

Die SprechenView ermdglicht Audio-Aufnahmen mit simultanem Live-Transkription.
Sie kombiniert AVFoundation fur die Aufnahme mit dem Speech Framework fur
Echtzeit-Spracherkennung und bietet erweiterte Features wie Pegel-Anzeige,
Pause/Resume und automatische Chunk-Erkennung durch Stille-Detection.

Kernklassen

AudioRecorder

Zentrale Klasse fur die Audio-Aufnahme basierend auf AVFoundation.
Property Typ Beschreibung

audioRecorder AVAudioRecorder? Native Audio-Recorder Instanz

isRecording Bool Aufnahme-Status Flag

isPaused Bool Pause-Status Flag

audiolevel Float Aktueller Pegel (0.0 - 1.0)

recordingURL URL? Pfad zur Audio-Datei

Audio-Einstellungen

Einstellung Wert
Format m4a (AAC)
Sample Rate 44100 Hz
Channels 1 (Mono)
Encoder Quality .high

Seite 1

AILO Handbuch | 1.5 Sprechen (Speak)

LiveTranscriber
Echtzeit-Spracherkennung mit dem Speech Framework fur Live-Transkription.

Kernkomponenten

* SFSpeechRecognizer — Apple Speech Recognition Engine

» SFSpeechAudioBufferRecognitionRequest — Audio-Buffer fir Streaming
» SFSpeechRecognitionTask — Aktiver Recognition-Task

* AVAudioEngine — Audio-Pipeline fur Mic-Input

Die App bendtigt NSSpeechRecognitionUsageDescription UNd NSMicrophoneUsageDescription in
Info.plist. Der User muss beide Berechtigungen erteilen.

Sprachunterstiitzung

Sprache Locale On-Device
Deutsch de-DE V4
Englisch (US) en-US V4
Englisch (UK) en-GB V4
Ul-Komponenten

Pegel-Anzeige (Level Meter)

Visuelle Darstellung des aktuellen Audio-Pegels wahrend der Aufnahme.

* Animierte Balken — Echtzeit-Visualisierung der Lautstarke
* Farbverlauf — Griin — Gelb — Rot bei steigendem Pegel
» Update-Rate — 60 FPS via CADisplayLink

* Dezibel-Normalisierung — Umrechnung von dB zu 0.0-1.0

Aufnahme-Steuerung
Button Icon Aktion
Start @ circle.fill Aufnahme und Transkription starten
W pause.fill Aufnahme pausieren (Resume mdglich)
Stop J stop.fill Aufnahme beenden und speichern
Cancel X xmark Aufnahme verwerfen

Seite 2 | AILO v1.0 | Dezember 2025

AILO Handbuch | 1.5 Sprechen (Speak)

Silence Detection

Intelligente Erkennung von Sprechpausen fur automatische Chunk-Segmentierung.

@ Automatische Chunks

Bei erkannter Stille wird die bisherige Transkription als Chunk finalisiert. Dies ermdglicht
naturliche Absatze ohne manuelle Eingabe und verbessert die Kl-Verarbeitung durch
sinnvolle Segmentierung.

Konfigurierbare Parameter

Parameter Default Settings Key
Mikrofon-Empfindlichkeit 0.5 kMicSensitivity
Stille-Schwellwert -40 dB kSilenceThreshold
Chunk-Dauer 2.0 Sek kChunkSeconds

On-Device Recognition

ILO nutzt requiresonDeviceRecognition = true flUr vollstandig offline Transkription. Dies
gewahrleistet Datenschutz und funktioniert ohne Internetverbindung.

AILO Handbuch — Kapitel 1.5
Version 1.0 | Dezember 2025

Seite 3 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.6 Mail Feature

£ 1.6 Mail Feature

Vollstéandige E-Mail-Verwaltung mit IMAP/SMTP-Integration

Ubersicht

Das Mail Feature ermdglicht die vollstandige Verwaltung von E-Mails innerhalb der AILO
App. Es bietet nahtlose Integration mit bestehenden E-Mail-Konten tber IMAP und SMTP,
intelligente Filterung und Sortierung sowie die Mdglichkeit, E-Mails als Logs zu speichern.

Eigenschaft Beschreibung

Verzeichnis Views/Mail/

Haupt-Views MailView, MessageDetailView, ComposeMailView

Protokolle IMAP (Empfang), SMTP (Versand), TLS/StartTLS

Datenbank SQLite (accounts, folders, msg_header, msg_body,
attachments)

Komponenten

MailView.swift — Posteingang

Die zentrale View fiir die E-Mail-Ubersicht mit adaptivem Layout fiir Compact und Regular
Size Classes.

Mailbox-Navigation: Inbox, Outbox, Sent, Drafts, Trash, Spam
Schnellfilter: Alle / Ungelesen / Markiert (Segmented Control)
Suchfunktion mit Echtzeit-Filterung

Badge-Anzeige fur ungelesene Nachrichten

Pull-to-Refresh fur Synchronisation

Viewport-basiertes Laden (ViewportSyncManager)

Size Class Layout

Compact (iPhone) CompactMessageListView mit NavigationLink zur Detail-
Ansicht

Regular (iPad) RegularSplitView mit Master-Detail-Layout

Seite 1 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.6 Mail Feature

MessageDetailView.swift — E-Mail-Ansicht

Detaillierte Ansicht einer einzelnen E-Mail mit allen Aktionen und Anhang-Verwaltung.

Header-Informationen

» Betreff, Absender (From), Empfanger (To, CC, BCC)
* Datum und Uhrzeit des Empfangs
+ Technische Header anzeigen/verbergen (Source View)

Aktionen

Aktion Icon Beschreibung

Rep|y arrowshape.turn.up.left Antwort an Absender

Reply All arrowshape.turn.up.left.2 Antwort an alle Empfanger

Forward arrowshape.turn.up.right E-Mail weiterleiten (mit Anhangen)
Create Log doc.badge.plus E-Mail als Log-Eintrag speichern
Flag/Unflag flag / flag.fill Markierung setzen/entfernen
Read/Unread envelope / envelope.open Gelesen/Ungelesen Status wechseln
Delete trash E-Mail in Papierkorb verschieben

Anhange-Verwaltung

Automatische Erkennung von Anhangen (BODYSTRUCTURE)
QuickLook-Vorschau flr unterstitzte Dateitypen

Inline-Bilder (CID-Referenzen) werden als Base64 Data-URLs eingebettet
Alle Anhange speichern mit Share-Sheet

ComposeMailView.swift — E-Mail verfassen

Formular zum Erstellen neuer E-Mails sowie fur Antworten und Weiterleitungen.

Eingabefelder

Von (From) — Absender-Account Auswahl
An (To) — Empfanger-Adressen

CC, BCC - Kopie-Empfanger (optional)
Betreff (Subject)

Nachrichtentext (Body) — Text oder HTML

Anhange hinzufugen

* Fotos aus Bibliothek (PhotosPicker)
+ Dateien aus Files-App (DocumentPicker)
* Anhange aus Original-Mail bei Forward

Kl-Integration

* Pre-Prompt Auswahl aus Katalog
* Automatische E-Mail-Generierung basierend auf Kontext
+ Format-aware: HTML fur HTML-Antworten, Text fur Text

Seite 2 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.6 Mail Feature

Technische Details

Datenmodelle

Entity Verwendung

MessageHeaderEntity E-Mail-Metadaten (Subject, From, To, Date, Flags, UID)

MessageBodyEntity E-Mail-Inhalt (HTML/Text Body, Content-Type)

AttachmentEntity Anhang-Metadaten (Filename, MIME-Type, Size, Content-
ID)

FolderEntity IMAP-Ordner (Name, Path, Special Folder Type)

Lokalisierung

Alle Ul-Texte sind vollstandig lokalisiert (Deutsch/Englisch). Die Lokalisierungsschlissel
folgen dem Pattern: app.mail. [view] . [element]

Schliissel Deutsch
app.mail.inbox Posteingang
app.mail.compose.title Verfassen
app.mail.action.reply Antworten
app.mail.action.forward Weiterleiten

Abhangigkeiten

* MailRepository — Zentrale Schnittstelle fir Mail-Operationen

* MailSyncEngine — 5-Phasen Synchronisation

* IMAPConnection — IMAP-Protokoll-Handler

* MailDaOs — MailReadDAO, MailWriteDAO, AttachmentDAO

* ViewportSyncManager — On-Demand-Laden sichtbarer E-Mails

AILO Handbuch — Kapitel 1.6 Mail Feature
Version 1.0 | Dezember 2025

Seite 3 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.7 Konfiguration

S [[[
@ 1.7 Konfiguration (Settings)
Zentrale Einstellungsverwaltung fiir KI-Provider, E-Mail-Konten und Pre-Prompts

Ubersicht

Die Konfigurationsseite bietet zentrale Verwaltung aller App-Einstellungen. Von hier aus
werden Kl-Provider, E-Mail-Konten, Pre-Prompts, Kategorien und Aufnahme-Parameter
konfiguriert. Alle Einstellungen werden persistent in UserDefaults gespeichert.

Eigenschaft Beschreibung

Verzeichnis Views/Configuration/

Haupt-View ConfigView.swift

Sub-Views AlManagerView, PrePromptManager, MailManager,
Categories

Persistierung UserDefaults + Keychain (flir Passworter/API-Keys)

Komponenten

ConfigView.swift — Hauptseite

Die zentrale Einstellungsseite mit Sektionen fur alle Konfigurationsbereiche.

Sektion Inhalt

Kategorien NavigationLink — Categories.swift

Mikrofon / Aufnahme Empfindlichkeit, Stille-Schwelle, Segmentlange (Slider)
Sprache Spracherkennungs-Locale (de-DE, en-US, etc.)

E-Mail NavigationLink — MailManager.swift

Kil NavigationLinks — AlManagerView, PrePromptManager

Seite 1 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.7 Konfiguration

AlManagerView.swift — KI-Provider

Verwaltung der Kl-Provider (OpenAl, Ollama, Custom). Unterstutzt mehrere Provider mit
Fallback-Mechanismus.

Funktionen

Provider hinzufligen / bearbeiten / I16schen
Aktiven Provider setzen (Standard)
Modell-Liste vom Server abrufen
Temperatur-Einstellung pro Provider

Provider-Typ API-Endpunkt Authentifizierung
OpenAl /vl/chat/completions Bearer Token (API-Key)
Ollama /api/chat, /api/generate Keine (lokal)

Custom Benutzerdefiniert Optional (API-Key)

AlEditor.swift — Provider bearbeiten

Anzeigename fiir Provider

Typ-Auswahl (OpenAl / Ollama / Custom)
Serveradresse und Port

API-Schlussel (im Keychain gespeichert)
Modell-Auswahl mit Reload-Funktion
Temperatur (0.0 — 2.0)

PrePromptManager.swift — Pre-Prompts

Verwaltung von Pre-Prompt-Vorlagen, die dem Kl-Modell als System-Prompt vorangestellt
werden.

Pre-Prompts erstellen / bearbeiten / [6schen

Name, Icon, Schlagwérter (Keywords) pro Preset

Standard-Preset festlegen

NavigationLink — PrePromptCatalogView fir hierarchische Struktur

PrePromptEditor.swift — Pre-Prompt bearbeiten

Feld Beschreibung

Name Kurzes Label (z.B. Korrektur, Protokoll)

Keywords Metadaten (Format: Schllssel: Wert; getrennt durch ;)
Inhalt Der eigentliche Pre-Prompt-Text fir das KI-Modell
Icon Emoiji zur visuellen Kennzeichnung (max. 3 Zeichen)

Seite 2 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.7 Konfiguration

MailManager.swift — E-Mail-Konten
Verwaltung der E-Mail-Konten mit IMAP/SMTP-Konfiguration.

E-Mail-Konten hinzufiigen / bearbeiten / 16schen
Aktiv/Inaktiv Status pro Konto
Verbindungstest-Funktion

NavigationLink — MailEditor fur Details

MailEditor.swift — Konto-Details

Sektion Felder

Konto Kontoname, Anzeigename, E-Mail-Adresse, Reply-To

Eingehend (IMAP) Protokoll, Server, Port, Verschlisselung, Username,
Passwort

Ausgehend (SMTP) Server, Port, Verschlisselung, Auth-Methode, Username,
Passwort

Synchronisation Initial Sync, Full Sync, Incremental Sync (Anzahl Mails)

Ordner Inbox, Sent, Drafts, Trash, Spam (Ordner abrufen)

Erweitert Timeout, Logging, Auto-Mark-as-Read, S/IMIME Signing

Categories.swift — Kategorien

Verwaltung der Log-Kategorien zur Organisation von Eintragen.

+ Kategorien hinzufiigen / bearbeiten / [6schen
» Sortierung per Drag & Drop
* Verwendung in SchreibenView fiir Log-Zuordnung

Settings Keys (UserDefaults)

Alle Einstellungen werden Uber definierte Keys in UserDefaults persistiert. Datei:
Configuration/Settings/SettingsKeys.swift

Konstante Beschreibung

kAIPresetsKey JSON [AlPrePromptPreset]
kPrePromptMenuKey JSON [PrePromptMenultem]
kCookbooksKey JSON [Cookbook]

kCategories JSON [String] Kategorien-Liste
kMicSensitivity Double 0...1 (Empfindlichkeit)
kSilenceThreshold Double -60...0 dB (Stille-Schwelle)
kSpeechLang String z.B. "de-DE"
Lokalisierung

Alle Ul-Texte sind vollstandig lokalisiert. Key-Pattern fiir Configuration:
config. [section]. [element] SOWi€ aiEditor.*, preprompts.*, mail.editor.*

AILO Handbuch — Kapitel 1.7 Konfiguration
Version 1.0 | Dezember 2025

Seite 3 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.8

1.8 Pre-Prompt Katalog System

Dokumentation des hierarchischen Katalog-Systems fiir Pre-Prompts, Rezepte und
Kochbticher in AILO.

Ubersicht

Das Pre-Prompt Katalog System ermdglicht die hierarchische Organisation von Ki-
Anweisungen (Pre-Prompts) in einer Ordnerstruktur. Nutzer kdnnen einzelne Pre-
Prompts erstellen, in Kategorien organisieren und zu komplexen Rezepten
kombinieren. Diese Rezepte werden in Kochbuchern verwaltet.

Hauptkomponenten

__ _Dati ___ ______ Beschreibung |

PrePromptCatalogView.swift Hierarchische Ordnerstruktur mit Drag &
Drop, Kontextmenus und Navigation

PrePromptPicker.swift Auswahl-Dialog fur Pre-Prompt Selektion in

anderen Views
PrePromptCatalogPickerSheet.swift Sheet-basierte Picker-Variante fir modale

Darstellung
RecipeEditor Editor fur Rezept-Kombinationen aus
mehreren Pre-Prompts
CookbookView.swift Kochbuch-Verwaltung fur Rezept-

Organisation
PrePromptCatalogManager.swift Singleton-Manager fur Katalog-Daten und
Business-Logic

Datenmodelle

PrePromptMenultem

Reprasentiert einen Eintrag in der hierarchischen Menustruktur. Kann entweder ein
Ordner oder ein Verweis auf ein Preset sein.

id: UUID — Eindeutige Kennung

name: String — Anzeigename

icon: String — Emoji-Symbol

parentlD: UUID? — Eltern-Ordner (nil = Root)
isFolder: Bool — Ordner oder Iltem

presetlD: UUID? — Verweis auf AlPrePromptPreset
keywords: String — Schlagworter fur Kontext

Seite 1

AILO Handbuch | Kapitel 1.8

AlIPrePromptPreset

Enthalt den eigentlichen Pre-Prompt-Text und Metadaten.

id: UUID — Eindeutige Kennung

name: String — Preset-Name

icon: String — Emoji-Symbol

text: String — Der Pre-Prompt-Text
keywords: String — Schlussel-Wert-Paare

PrePromptRecipe

Kombiniert mehrere Pre-Prompts zu einem zusammengesetzten Prompt.

id: UUID — Eindeutige Kennung

name: String — Rezept-Name

icon: String — Emoji-Symbol

elementlDs: [UUID] — Referenzierte Menu-ltems
keywords: String — Zusatzliche Schlagworter

Cookbook

Container fur die Organisation von Rezepten.

id: UUID — Eindeutige Kennung
name: String — Kochbuch-Name
icon: String — Emoji-Symbol
sortOrder: Int — Sortierreihenfolge

Funktionen

Hierarchische Navigation

Die PrePromptCatalogView ermdglicht das Navigieren durch eine beliebig tiefe
Ordnerstruktur. Breadcrumb-Navigation zeigt den aktuellen Pfad an. Ordner und
Items konnen per Drag & Drop verschoben werden.

Rezept-Erstellung

Im RecipeEditor kbnnen Nutzer mehrere Pre-Prompts zu einem Rezept kombinieren.
Die Reihenfolge der Elemente bestimmt die Zusammensetzung des generierten
Prompts. Eine Live-Vorschau zeigt das Ergebnis an.

Keyword-System

Schlagworter werden als Key-Value-Paare gespeichert (Format: 'Schlussel: Wert;
Schlussel2: Wert2"). Bei der Prompt-Generierung werden alle Keywords aus Menu-
ltems, Presets und Rezepten zusammengefuhrt. Spatere Definitionen Uberschreiben
frihere.

Seite 2

AILO Handbuch | Kapitel 1.8

Export/import

Der gesamte Katalog kann als JSON-Datei exportiert und auf anderen Geraten
importiert werden. Das Format umfasst Menu-ltems, Presets, Recipes, Cookbooks
und Recipe-Menu-ltems.

Standard-Kategorien

Bei der ersten Initialisierung werden folgende Kategorien automatisch erstellt:

____lcon ____Kategorie _ __ _____ _Verwendung |

: Mail Pre-Prompts fur E-Mail-Erstellung
&) Reply Pre-Prompts fur Antwort-Mails
(5] Forward Pre-Prompts fur Weiterleitungen
O Analyze Pre-Prompts fur Inhaltsanalyse
"4 Notes Pre-Prompts fur Notizen und Logs

PrePromptCatalogManager API

Der Singleton-Manager stellt folgende 6ffentliche Methoden bereit:

children(of:) Gibt alle Kinder eines Eltern-Elements zurtck
path(to:) Breadcrumb-Pfad zu einem Element
preset(withlD:) Preset anhand der UUID abrufen
presets(in:) Alle Presets in einem Ordner (rekursiv)
recipe(withlD:) Rezept anhand der UUID abrufen
recipes(inCookbook:) Alle Rezepte in einem Kochbuch
generatePrompt(from:) Generierten Prompt aus Rezept erstellen
Persistierung

Alle Katalog-Daten werden uber UserDefaults persistiert. Die verwendeten Schlussel
sind in SettingsKeys.swift definiert:

kPrePromptMenuKey — Menu-ltems (JSON)
kAlPresetsKey — Pre-Prompts (JSON)
kPrePromptRecipesKey — Rezepte (JSON)
kCookbooksKey — Kochbucher (JSON)
kRecipeMenuKey — Recipe-Menu-ltems (JSON)

Seite 3

AILO Handbuch | Kapitel 1.8

Lokalisierung

Das Katalog-System ist vollstandig in Deutsch und Englisch lokalisiert. Die
Lokalisierungs-Keys folgen dem Muster 'catalog.* und 'cookbook.*. Alle Ul-Texte,
Fehlermeldungen und Standardkategorien sind Ubersetzt.

Verzeichnisstruktur

Views/Configuration/

* PrePromptCatalogView.swift
* CookbookView.swift
Helpers/Utilities/

* PrePromptCatalogManager.swift
* PrePromptPicker.swift
Database/Models/

PrePromptMenultem.swift
PrePromptRecipe.swift
Cookbook.swift
RecipeMenultem.swift

AILO Handbuch — Kapitel 1.8
Erstellt: Dezember 2025

Seite 4

AILO Handbuch | Kapitel 1.9 Shared Components

<’ 1.9 Shared Components

Wiederverwendbare Ul-Komponenten und Hilfsklassen

Uebersicht

Die Shared Components sind wiederverwendbare Ul-Bausteine und Hilfsklassen, die in
verschiedenen Views der AILO App eingesetzt werden. Sie sorgen fuer konsistentes Design
und reduzieren Code-Duplizierung.

Eigenschaft Beschreibung

Verzeichnisse Views/Shared/, Helpers/UI/, Services/Audio/
Komponenten 5 Ul-Komponenten + 1 Helper-Klasse

Frameworks SwiftUl, MessageUl, AVFoundation
Komponenten

MailComposer.swift

UlViewControllerRepresentable-Wrapper fuer MFMailComposeViewController. Ermoeglicht
das Versenden von E-Mails ueber die native iOS Mail-App.

Eigenschaften

Property Beschreibung

subject: String E-Mail-Betreff

body: String Nachrichtentext (Plain Text)
recipients: [String] Empfaenger-Adressen (optional)

attachments: [Attachment] Anhaenge mit Data, MIME-Type, Filename

Verwendung

* LogsListView: Logs per E-Mail teilen
* Audio-Logs mit m4a-Anhang versenden
+ MFMailComposeViewControllerDelegate fuer Result-Handling

Seite 1 | AILO v1.0 | Dezember 2025

AudioPlayerView.swift

AILO Handbuch | Kapitel 1.9 Shared Components

Kompakte Audio-Wiedergabe-Komponente als Sheet. Nutzt AudioPlaybackController fuer

AVAudioPlayer-Integration.

Funktionen

AudioPlaybackController

Methode / Property
load (url:)

play() / pause()
seekBy (seconds:)
seek (to:)
isPlaying: Bool
progress: Double

SelectionCard

Play / Pause mit grossem zentralen Button

Seek per Slider (Fortschrittsanzeige)

Skip -10s / +10s Buttons

Zeitanzeige: aktuelle Position / Gesamtdauer
Automatisches Abspielen bei Oeffnen

Presentation Detents: 25% und 50% Bildschirmhoehe

Beschreibung

Laedt Audio-Datei, setzt AVAudioSession
Wiedergabe starten / pausieren

Relative Positionsaenderung (+/- Sekunden)
Absolute Position (0.0 - 1.0)

@Published Wiedergabe-Status
@Published Fortschritt (0.0 - 1.0)

Grosse Kachel-Komponente fuer Auswahlmenues. Verwendet in LogsView fuer die
Hauptnavigation (Write, Speak, List).

Parameter

Parameter

icon: String
title: String
color: Color

Design

Beschreibung

SF Symbol Name (z.B. "square.and.pencil")
Beschriftung der Kachel

Akzentfarbe fuer Icon und Hintergrund

HStack mit Icon (36pt) und Titel

Icon in farbigem Container (60x60, cornerRadius 12)
Chevron-Indikator rechts

Schatten und abgerundete Ecken (cornerRadius 16)

Seite 2 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.9 Shared Components

LabeledSlider

Slider mit integriertem Label und Wertanzeige. Verwendet in ConfigView fuer Mikrofon-
Einstellungen.

Parameter

Parameter Beschreibung

title: String Label-Text links vom Slider

value: Binding<Double> Gebundener Wert

range: ClosedRange Wertebereich (z.B. 0...1, -60...0)

step: Double Schrittweite

display: String Formatierte Wertanzeige (z.B. "50 %", "-30 dB")

Verwendung in ConfigView

* Mikrofon-Empfindlichkeit (0-100%)
+ Stille-Schwelle (-60 bis 0 dB)
+ Segmentlaenge (1-10 Sekunden)

MarkdownHelper.swift

Hilfsklasse fuer Markdown-Formatierung. Bietet statische Methoden zum Einfuegen von
Markdown-Syntax.

Methoden

Methode Funktion
insertAtLineStart(_:in:) Praefix am Zeilenanfang (#, - , etc.)
wrapSelectionBold(_:) Text mit **fett** umschliessen
wrapSelectionItalic(_:) Text mit *kursiv* umschliessen
Lokalisierung

Die Shared Components verwenden lokalisierte Strings aus den Localizable.strings-Dateien.
Relevante Key-Patterns:

Key Deutsch
mail.result.sent E-Mail gesendet
mail.result.failed E-Mail fehlgeschlagen
markdown.preview.title Vorschau

markdown. toast.copied In Zwischenablage kopiert

AILO Handbuch - Kapitel 1.9 Shared Components
Version 1.0 | Dezember 2025

Seite 3 | AILO v1.0 | Dezember 2025

AILO Handbuch | Kapitel 2.1

2.1 Kl-Integration

Dokumentation der KlI-Service-Schicht fiir OpenAl, Ollama und Custom Endpoints.

Ubersicht

Die Kl-Integration in AILO ermdglicht die Anbindung verschiedener Large Language
Models (LLMs) fur Textuberarbeitung und -generierung. Der zentrale AlClient
abstrahiert die Unterschiede zwischen OpenAl-kompatiblen APIs und Ollama,
sodass Nutzer nahtlos zwischen Providern wechseln kdnnen.

Komponenten

| Dati . Beschrebung
AlClient.swift Zentraler HTTP-Client fur alle KI-Operationen
AlEditor.swift SwiftUl-Editor fur Provider-Konfiguration
AlManagerView.swift Verwaltung mehrerer Kl-Provider

AlProviderConfig Datenmodell fur Provider-Einstellungen

Unterstlitzte Provider

OpenAl

Vollstandige Unterstitzung der OpenAl Chat Completions API.

Endpoint: /v1/chat/completions

Standard-URL: https://api.openai.com

Port: 443

Modelle: gpt-4, gpt-40, gpt-40-mini, gpt-3.5-turbo
Authentifizierung: Bearer Token (API-Key)

Mistral

OpenAl-kompatible APl von Mistral Al.

+ Endpoint: /v1/chat/completions
« Standard-URL: https://api.mistral.ai
* Modelle: mistral-large-latest, mistral-medium, mistral-small

Ollama

Lokale LLM-Ausfuhrung uber Ollama-Server.

Endpoints: /api/chat, /api/generate
Standard-URL.: http://localhost

Port: 11434

Modelle: llama3, llama3:8b, mistral, codellama, etc.
Authentifizierung: Optional (Bearer Token)

Seite 1

AILO Handbuch | Kapitel 2.1

Custom Endpoints

Beliebige OpenAl-kompatible Server kdnnen konfiguriert werden. Der AlClient
erkennt automatisch das API-Format anhand der URL.

AlClient API

Hauptmethode: rewrite()

Fuhrt eine Textuberarbeitung durch. Erkennt automatisch den Provider-Typ.

baseURL Server-Adresse (z.B. https://api.openai.com)
port Port-Nummer (optional, Standard: 443)
apiKey API-Schlussel fur Authentifizierung

model Modell-ID (z.B. gpt-4, llama3:8b)

prePrompt System-Prompt fur Kontext und Anweisungen
userText Der zu Uberarbeitende Originaltext
completion Callback mit Result<String, Error>

Automatische Provider-Erkennung

Der AlClient erkennt anhand der URL automatisch den Provider-Typ:

1. URL enthalt 'openai.com’ oder 'mistral.ai' — OpenAl-kompatible API
2. Andere URLs — Ollama-API (/api/chat, /api/generate)
3. Fallback — Automatischer Wechsel zwischen Endpoints bei Fehlern

Error Handling

Der ClientError-Enum definiert alle moglichen Fehlerzustande mit lokalisierten
Meldungen:

invalidBaseURL Ungultige Serveradresse
invalidHTTPResponse Ungultige Serverantwort
httpStatus(Int) HTTP-Fehler mit Statuscode
emptyResponse Leere Antwort vom Server
decoding JSON-Parsing fehlgeschlagen
endpointNotFound API-Endpoint nicht gefunden (404)

Provider-Konfiguration

Das AlProviderConfig-Struct speichert alle Einstellungen eines Providers:

id: UUID — Eindeutige Kennung

name: String — Anzeigename (z.B. 'OpenAl Prod')

type: AlProviderType — OpenAl, Mistral, Ollama, Custom
baseURL: String — Server-Adresse

port: String — Port-Nummer

Seite 2

AILO Handbuch | Kapitel 2.1

+ apiKey: String — API-Schlussel (verschlusselt gespeichert)
* model: String — Ausgewahltes Modell
+ temperature: Double — Kreativitats-Parameter (0.0-2.0)

Fallback-Mechanismus

Der AlClient implementiert einen mehrstufigen Fallback bei fehlenden oder
ungultigen Parametern:

4. Ubergebene Parameter priifen: Direkt verwendbare Werte haben Prioritat

5. Ausgewahlten Provider laden: Fallback auf aktiven Provider aus
UserDefaults

6. Endpoint-Fallback: Bei Ollama: /api/generate — /api/chat

7. Standardwerte: llama3:8b als Default-Modell

Modell-Discovery

Der AlEditor kann verfugbare Modelle vom Server abrufen:

* OpenAl/Mistral: GET /v1/models — datal].id
« Ollama: GET /api/tags oder /api/models — models[].name

Persistierung

Provider-Konfigurationen werden Uber UserDefaults gespeichert:

+ config.ai.providers.list — JSON-Array aller Provider
« config.ai.providers.selected — UUID des aktiven Providers
API-Keys werden zusatzlich im iOS Keychain verschlisselt gespeichert.

Verzeichnisstruktur

Services/Al/

* AlClient.swift
Views/Configuration/

+ AlManagerView.swift
+ AlEditor.swift

AILO Handbuch — Kapitel 2.1
Erstellt: Dezember 2025

Seite 3

AILO Handbuch | Kapitel 2.2

2.2 Mail Services

Dokumentation der Mail-Service-Schicht mit 5-Phasen-Synchronisation, Repository-
Pattern und Viewport-basiertem Laden.

Ubersicht

Die Mail Services bilden die zentrale Schicht fur E-Mail-Operationen in AILO. Sie
implementieren ein Repository-Pattern als einheitliche Schnittstelle fur die Ul, eine 5-
Phasen-Synchronisations-Architektur fur effizientes Laden und Viewport-basiertes
Sync fur optimale Performance.

Komponenten
MailRepository.swift Zentrale Schnittstelle fur Ul — einziger Entry-Point
MailSyncEngine.swift 5-Phasen Synchronisations-Engine

MailProcessorAdapter.swift Bridge zwischen SyncEngine und Repository
ViewportSyncManager.swift Viewport-basiertes Laden mit Prefetch-Buffer
MailSendService.swift Outbox-Queue und SMTP-Versand
MailHealthMonitor.swift Verbindungs-Health-Check und Metriken
FolderDiscoveryService.swift Automatische Ordner-Erkennung via IMAP LIST
MailProcessor.swift MIME-Parsing und Content-Extraktion

5-Phasen Synchronisations-Architektur

Die MailSyncEngine implementiert eine strikte Trennung der Sync-Phasen fur
optimale Performance und Ressourcennutzung:

Phase 1: Header-Only Sync

Schnelle Header-Synchronisation fiir die Mailbox-Ubersicht. Verwendet IMAP
FETCH mit minimalen Daten.

* IMAP-Befehl: FETCH (FLAGS UID ENVELOPE)
« Daten: UID, From, Subject, Date, Flags
+ Speicherung: msg_header Tabelle

Phase 2: Body-On-Demand

E-Mail-Body wird erst bei Bedarf (Offnen der Mail) geladen.

* IMAP-Befehl: FETCH BODY]]
* Verarbeitung: MailProcessor fur MIME-Parsing
+ Speicherung: msg_body Tabelle

Phase 3: Central Processing

Seite 1

AILO Handbuch | Kapitel 2.2

Zentrale Verarbeitung von MIME-Strukturen, Charset-Konvertierung und Content-
Extraktion.

* HTML/Text-Extraktion: Multipart-Handling

* Charset-Handling: UTF-8, ISO-8859-1, etc.

+ Transfer-Encoding: Quoted-Printable, Base64
Phase 4: Structured Storage

Strukturierte Speicherung in SQLite mit Blob-Storage fur grof3e Inhalte.
+ Tabellen: msg_header, msg_body, attachments
+ Blob-Storage: blob_meta, mime_parts, render_cache
* Indizes: accountld, folder, date fur schnelle Queries

Phase 5: Bidirectional Sync

Synchronisation von Flag-Anderungen (gelesen, markiert) zurtick zum Server.

* IMAP-Befehl: STORE +FLAGS / -FLAGS
+ Unterstutzte Flags: \Seen, \Flagged, \Deleted

MailRepository API

Das Repository ist der einzige Entry-Point fur die Ul. Es abstrahiert DAOs,
SyncEngine und SendService.

listHeaders() Alle Header eines Ordners abrufen
getBody() Body einer E-Mail laden (on-demand)
sync(accountld:) Synchronisation fur Account starten
send(draft:) E-Mail in Outbox einreihen
health(accountld:) Verbindungs-Status abrufen
onChanges(accountid:) Publisher fur Datenanderungen
getAllServerFolders() Alle Ordner vom Server via IMAP LIST
specialFolders() Spezialordner-Mapping abrufen
ViewportSyncManager

Optimiert die Synchronisation auf sichtbare E-Mails plus Puffer fur flussiges Scrollen.

Funktionsweise

Tracking: rowAppeared(uid:) / rowDisappeared(uid:)
Debounce: 0.3 Sekunden Verzdgerung vor Sync
Prefetch-Buffer: +10 UIDs um Viewport
Batch-GroBe: Max. 30 UIDs pro Sync-Request

N =

Konfiguration

+ prefetchBuffer: 10 (UIDs vor/nach Viewport)
+ debounceDelay: 0.3 Sekunden

Seite 2

AILO Handbuch | Kapitel 2.2
+ maxBatchSize: 30 UIDs

Sync-Limits

Konfigurierbare Limits pro Account in den Mail-Einstellungen:

Standard

syncLimitlnitial 50 Initiales Laden bei erstem Sync
syncLimitRefresh 100 Pull-to-Refresh Sync
syncLimitincremental 20 Hintergrund-Sync neue Mails

Account Health Monitoring

Der MailHealthMonitor Gberwacht den Verbindungsstatus und liefert Health-
Metriken:

* AccountHealth.ok: Verbindung funktioniert
* AccountHealth.degraded: Eingeschrankte Funktionalitat
* AccountHealth.down: Keine Verbindung madglich

Folder Discovery

Automatische Erkennung von Spezialordnern via IMAP LIST und Namensanalyse:

inbox: INBOX (standardisiert)
sent: Sent, Gesendet, Sent ltems
drafts: Drafts, Entwurfe

trash: Trash, Papierkorb, Deleted
spam: Spam, Junk

Verzeichnisstruktur

Services/Mail/Sync/

MailRepository.swift
MailSyncEngine.swift
MailProcessorAdapter.swift
ViewportSyncManager.swift
MailSendService.swift
MailProcessor.swift

+ FolderDiscoveryService.swift
Services/Mail/Diagnostics/

* MailHealthMonitor.swift

* MailLogger.swift

* MailMetrics.swift
Helpers/Utilities/

+ MailSendReceive.swift (Transport Layer)

Seite 3

AILO Handbuch | Kapitel 2.2

AILO Handbuch — Kapitel 2.2
Erstellt: Dezember 2025

Seite 4

AILO Handbuch | Teil 2: Services & Business Logic

2.3 IMAP Implementation

Services/Mail/IMAP/ » Custom IMAP Protocol Layer

Ubersicht

Die IMAP-Implementation in AILO ist eine vollstandig eigene Losung, die ohne externe
Bibliotheken auf Apples Network.framework (NWConnection) aufbaut. Sie bietet sichere
Verbindungen Uber TLS/STARTTLS und unterstutzt alle gangigen IMAP-Befehle fur E-Mail-
Synchronisation.

Komponente Beschreibung

IMAPConnection Low-Level TCP/TLS Transport Layer

IMAPCommands Stateless Helper fir IMAP-Befehlsausflihrung

IMAPParsers Response-Parsing fur ENVELOPE, FLAGS,
BODYSTRUCTURE

IMAPConnection.swift

Der Low-Level Transport-Layer fir IMAP-Verbindungen. Verwaltet TCP/TLS-Verbindungen,
SNI, Timeouts und das Senden/Empfangen von IMAP-Zeilen.

Konfiguration

IMAPConnectionConfig

Parameter Typ Beschreibung

host String IMAP-Server Hostname

port Int Port (993 fur IMAPS, 143 fir STARTTLS)

tls Bool Direktes TLS (true) oder Plain+STARTTLS (false)
sniHost String? Server Name Indication fir TLS
connectionTimeoutSec Int Verbindungs-Timeout (Standard: 15s)
commandTimeoutSec Int Befehls-Timeout (Standard: 10s)
idleTimeoutSec Int Idle-Timeout firr lange Reads (Standard: 10s)

Fehlerbehandlung

Die IMAPError-Enumeration definiert alle moglichen Fehler:

Fehlertyp Beschreibung

.invalidState Ungultiger Verbindungszustand
.connectTimeout Verbindungs-Timeout Uberschritten
.connectFailed Verbindungsaufbau fehlgeschlagen
.sendFailed Senden fehlgeschlagen
.receiveFailed Empfangen fehigeschlagen
.networkUnreachable Netzwerk nicht erreichbar
.protocolError IMAP-Protokollfehler

.closed Verbindung geschlossen
Kernmethoden

+ open(_ cfg: IMAPConnectionConfig) — Offnet eine neue IMAP-Verbindung mit TLS
1.2/1.3 Support
* close() — Beendet die Verbindung und raumt Ressourcen auf

Seite 1 | AILO IMAP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

* upgradeToTLS() — Upgrade auf TLS nach STARTTLS-Befehl
+ send(line: String) — Sendet eine IMAP-Zeile (CRLF wird automatisch angehangt)
* receiveLines(untilTag:) — Empfangt Zeilen bis zur Tagged Response (OK/NO/BAD)

IMAPCommands.swift

Stateless Helper fur die Ausfuihrung von IMAP-Befehlen. Generiert eindeutige Tags (A1, A2,
...) und formatiert Befehle gemall RFC 3501.

Session-Befehle

Methode Beschreibung

greeting () Empfangt Server-Begriflung (* OK IMAP4rev1 ...)
login (user:pass:) Authentifizierung mit Benutzername/Passwort
logout () Beendet die IMAP-Sitzung ordnungsgeman
startTLS () Initiiert STARTTLS-Upgrade

capabilities () Ruft Server-Capabilities ab

Ordner-Befehle

Methode Beschreibung

listall () Listet alle verfugbaren Ordner (LIST ™ "*")
listSpecialUse () Listet Spezialordner gemaf RFC 6154
select (folder:readOnly:) Wahlt Ordner aus (SELECT/EXAMINE)

Fetch-Befehle

Methode Beschreibung

uidSearch (query:) Sucht UIDs nach Kriterien
uidFetchEnvelope (uids:) Holt ENVELOPE + INTERNALDATE + FLAGS
uidFetchEnvelopeWithStructure (uids:) Mit zusatzlichem BODYSTRUCTURE
uidFetchFlags (uids:) Nur FLAGS abrufen

uidFetchBody (uid:partsOrPeek:) Body-Inhalt abrufen

uidStore (uids:flags:action:) Flags setzen/entfernen
IMAPParsers.swift

Parser-Utilities flr IMAP-Protokoll-Responses. Konvertiert rohe Antwortzeilen in typisierte
Swift-Strukturen. Unterstiitzt RFC 2047 flir Encoded-Words.

Datenmodelle

EnvelopeRecord

* uid: string — Eindeutige Message-ID

* subject: String — Betreff (RFC 2047 dekodiert)
* from: String— Absender (RFC 2047 dekodiert)
* internalDate: Date? — Server-Empfangsdatum

MessageEnvelope
Erweitertes Envelope-Modell mit vollstandigen Adressfeldern:

* to, cc, bcc: [String] — Empfanger-Listen
* messageld: String? — Message-ID Header

Seite 2 | AILO IMAP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

BodyStructure
Rekursive Struktur fur MIME-Parts gemal RFC 2045:

* single(pPart) — Einzelner MIME-Part (text/plain, image/png, etc.)

* multipart (type:subType:parts:) — Multipart-Container (mixed, alternative,
related)

Parser-Methoden
Methode Riickgabe
parseEnvelope (lines:) [EnvelopeRecord] — Parsed ENVELOPE-Felder
parseFlags (lines:) [FlagsRecord] — UIDs mit zugehorigen Flags
parseBodyStructure (line:) BodyStructure — Rekursive MIME-Struktur
parseBodySection (lines:) String? — Body-Inhalt als Text
parseUIDs (line:) [String] — UIDs aus SEARCH-Antwort
parseFetchResponse (data:) FetchResult — Vollstandige FETCH-Antwort

TLS/STARTTLS Support

AILO unterstiitzt beide Verbindungsmodi fiir sichere E-Mail-Ubertragung:

Direkte TLS-Verbindung (IMAPS)

+ Standard-Port: 993
+ Sofortige TLS-Verschliusselung beim Verbindungsaufbau
+ Konfiguration: tls = true in IMAPConnectionConfig

STARTTLS-Upgrade

« Standard-Port: 143
* Unverschlusselte Verbindung — STARTTLS-Befehl — TLS-Upgrade
* upgradeToTLS() schlief3t Plain-Verbindung und 6ffnet TLS-Tunnel

TLS-Versionen

Unterstltzte Protokollversionen: TLS 1.2 (Minimum) bis TLS 1.3 (Maximum), konfiguriert
Uber sec_protocol_options flir maximale Kompatibilitat mit Enterprise-Mailservern.

Verwendungsbeispiel

Typischer Workflow fur das Abrufen von E-Mail-Headern:

1. IMAPConnection mit IMAPConnectionConfig erstellen
2. open() aufrufen — Verbindung herstellen

3. greeting() — Server-Begriflung empfangen

4. Optional: startTLS() fur STARTTLS-Upgrade

5. login(user:pass:) — Authentifizierung

6. select(folder:) — Ordner auswahlen

7. uidSearch() — UIDs abrufen

8. uidFetchEnvelope() — Header laden

9. IMAPParsers.parseEnvelope() — Response parsen
10. logout() + close() — Verbindung beenden

Seite 3 | AILO IMAP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Technische Hinweise

Thread-Safety: IMAPConnection ist NICHT thread-safe. Verwenden Sie eine Instanz
nur von einem seriellen Kontext.

Async/Await: Alle Netzwerk-Operationen sind async und nutzen Swift Concurrency
(CheckedContinuation).

RFC 2047: Encoded-Words in Betreff und Absender werden automatisch dekodiert
(UTF-8, ISO-8859-1).

Literal-Handling: Der Transport materialisiert {n}\r\n-Literal-Blécke automatisch in
den empfangenen Zeilen.

Fallback-Encoding: Bei UTF-8-Dekodierungsfehlern wird automatisch 1ISO-8859-1
versucht.

AILO Handbuch — Kapitel 2.3 IMAP Implementation
Version 1.0 | Dezember 2025

Seite 4 | AILO IMAP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

2.4 SMTP Implementation

Services/Mail/SMTP/ E-Mail-Versand mit S/IMIME Support

Ubersicht

Die SMTP-Implementation in AILO ermdglicht den sicheren Versand von E-Mails mit
vollstandiger MIME-Unterstitzung, optionaler S/IMIME-Signierung und einer persistenten
Outbox-Queue mit automatischem Retry-Mechanismus.

Komponente Beschreibung

SMTPADbstractions Protokoll-Definition fir austauschbare Clients
SMTPClient NWConnection-basierter SMTP-Client
NIOSMTPClient SwiftNIO-basierte Alternative (optional)
MailSendService Outbox-Queue mit Retry-Logik
SMIMESigningService S/MIME-Signierung fiir ausgehende Mails

SMTPADbstractions.swift

Definiert das SMTPClientProtocol zur Entkopplung des MailSendService von konkreten
SMTP-Client-Implementierungen. Ermdglicht den Austausch zwischen NWConnection- und
SwiftNIO-basierten Clients.

SMTPClientProtocol

* testConnection(config: SMTPConfig) — Result<Void, SMTPError>

* send(_ message: MailMessage, using config: SMTPConfig) — DeliveryResult

SMTPConfig

Parameter Typ Beschreibung

host String SMTP-Server Hostname

port Uint16 Port (587 fur STARTTLS, 465 fur SSL)
encryption Encryption .none, .startTLS, .ssITLS
username String? Benutzername fir Authentifizierung
password String? Passwort fur Authentifizierung
heloName String HELO/EHLO Domain-Name
connectionTimeoutSec Int Verbindungs-Timeout
commandTimeoutSec Int Befehls-Timeout
SMTPClient.swift

Implementiert das SMTPClientProtocol mit Apples Network.framework (NWConnection).
Unterstitzt TLS/STARTTLS, PLAIN/LOGIN-Authentifizierung und vollstandiges RFC
5321/5322-konformes Message-Building.

Fehlerbehandlung (SMTPError)

Fehlertyp Beschreibung

invalidState Ungultiger Verbindungszustand
connectTimeout Verbindungs-Timeout Gberschritten
connectFailed Verbindungsaufbau fehlgeschlagen

Seite 1 | AILO SMTP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Fehlertyp Beschreibung

greetingFailed Server-BegriRung ungiiltig
startTLSRejected Server hat STARTTLS abgelehnt
authRequired Authentifizierung erforderlich

authFai
comma
sendFa
closed

SMTP

©CONOOOPRWN =

led Authentifizierung fehlgeschlagen
ndFailed SMTP-Befehl fehlgeschlagen (Code + Message)
iled Senden fehlgeschlagen

Verbindung geschlossen

-Workflow

Verbindung 6ffnen (open) — TCP/TLS-Handshake
Server-Greeting empfangen (220 OK)

EHLO senden — Capabilities abrufen

Optional: STARTTLS — TLS-Upgrade

AUTH LOGIN/PLAIN — Authentifizierung

MAIL FROM — Absender setzen

RCPT TO — Empféanger setzen (To, Cc, Bcc)
DATA — RFC 5322 Message ubertragen

QUIT — Verbindung beenden

MailSendService.swift

Verwaltet die Outbox-Queue fir ausgehende E-Mails. Bietet asynchronen Versand mit
automatischem Retry bei Fehlern, Backoff-Strategien und persistente Speicherung tber

OutboxDAO.

Outboxltem

Feld Typ Beschreibung

id uuiD Eindeutige ltem-ID
accountId uuID Zugehdriger Mail-Account
createdAt Date Erstellungszeitpunkt
lastAttemptAt Date? Letzter Versuch
attempts Int Anzahl Versuche

status OutboxStatus pending, sending, sent, failed, cancelled
lastError String? Letzter Fehlertext

draft MailDraft E-Mail-Inhalt

Public API

queue(_ draft:accountld:) — Fiigt Draft zur Outbox hinzu

sendDraft(_ draft:accountld:) — Validiert, queued und triggert Versand
retry(_ id:accountld:) — Setzt fehlgeschlagenes Item zuriick auf pending
processNext(accountld:) — Verarbeitet das nachste Item (One-Shot)
processAll(accountld:) — Verarbeitet Queue bis leer/Fehler
publisherOutbox(accountld:) — Combine Publisher fiir Outbox-Anderungen

Retry-Mechanismus

Exponentielles Backoff bei Fehlern

Minimum 30 Sekunden zwischen Versuchen
Erfolge/Fehler werden in RetryPolicy protokolliert
MailMetrics trackt Success/Failure-Raten pro Host

Seite 2 | AILO SMTP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

S/MIME Signing Support
AILO unterstutzt die digitale Signierung ausgehender E-Mails mittels S/IMIME (RFC 5751).

Die Signatur wird tdber SMIMESigningService erstellt und als multipart/signed-Nachricht
gesendet.

SMIMESigningService

+ signMessage(mimeContent:certificateld:) — Result<Data, SigningError>
+ canSign(certificateld:) — Bool — Prift ob Zertifikat verfugbar

Plattform-spezifische Implementierung

Plattform Methode

macOS CMSEncoder API fiir native CMS/PKCS#7-Signierung

i0S Manuelle CMS-Konstruktion mit Security Framework +
CommonCrypto

Signierungsprozess

10. Identity (Zertifikat + Private Key) aus Keychain laden

11. Inner MIME Content erstellen (Body ohne Outer Headers)
12. SHA-256 Hash des Contents berechnen

13. Signatur mit Private Key erstellen (PKCS#7/CMS)

14. multipart/signed Message zusammenbauen

15. application/pkcs7-signature Part anhangen

SigningError

* .certificateNotFound — Zertifikat nicht im Keychain
* .certificateError — Zertifikat konnte nicht geladen werden
* .privateKeyError — Private Key nicht verfigbar

MIME Message Building

Der SMTPClient baut RFC 5322-konforme Messages mit vollstandiger MIME-Unterstitzung
fur Text, HTML, Multipart und Attachments.

Unterstiitzte Content-Types

* text/plain— Reiner Text (UTF-8)

* text/html — HTML-Inhalt

* multipart/alternative — Text + HTML kombiniert
* multipart/mixed— Mit Attachments

* multipart/signed — S/IMIME-signiert

RFC-Konformitat

RFC 5321: SMTP-Protokoll, Dot-Stuffing

RFC 5322: Internet Message Format

RFC 2047: Encoded-Words fur Header (Subject, From)
RFC 2045: MIME Content-Type und Boundaries

RFC 5751: S/IMIME Message Specification

Seite 3 | AILO SMTP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Technische Hinweise

* Async/Await: Alle Netzwerk-Operationen nutzen Swift Concurrency.

* Worker-Queues: Jeder Account hat eine dedizierte DispatchQueue fir Outbox-
Verarbeitung.

+ Combine Integration: CurrentValueSubject publiziert Outbox-Anderungen fiir Ul-
Updates.

+ Line Endings: CRLF (\r\n) fir SMTP-Ubertragung, LF fir S/IMIME-Hash-
Berechnung.

» Dot-Stuffing: Zeilen mit fUhrendem Punkt werden gemafl RFC 5321 escaped.

AILO Handbuch — Kapitel 2.4 SMTP Implementation
Version 1.0 | Dezember 2025

Seite 4 | AILO SMTP Implementation v1.0

AILO Handbuch | Teil 2: Services & Business Logic

2.5 Pre-Prompt Management

Helpers/Utilities/ + Hierarchisches Prompt-Katalog-System

Ubersicht

Das Pre-Prompt Management System in AILO bietet eine hierarchische Struktur zur
Organisation, Verwaltung und Kombination von KI-Prompts. Es unterstiitzt verschachtelte
Ordner, wiederverwendbare Presets, Rezept-Kombinationen und Kochblcher flir komplexe
Prompt-Workflows.

Komponente Beschreibung

PrePromptCatalogManager Singleton Manager fiir alle Katalog-Operationen
PrePromptMenultem Hierarchisches Menu-Item (Ordner oder Preset-Referenz)
AlPrePromptPreset Einzelner Pre-Prompt mit Text und Metadaten
PrePromptRecipe Kombiniert mehrere Presets zu einem Workflow
Cookbook Sammlung von Rezepten in Kapiteln

RecipeMenultem Hierarchische Struktur innerhalb eines Kochbuchs

PrePromptCatalogManager
Der zentrale Singleton-Manager fiir das gesamte Pre-Prompt-System. Verwaltet

Menustruktur, Presets, Rezepte und Kochblcher. Implementiert als ObservableObject fur
SwiftUl-Integration.

Published Properties

Property Typ Beschreibung
menultems [PrePromptMenultem] Hierarchische Menustruktur
presets [AlPrePromptPreset] Alle Pre-Prompt-Inhalte
recipes [PrePromptRecipe] Kombinierte Rezepte
cookbooks [Cookbook] Rezept-Sammlungen
recipeMenultems [RecipeMenultem] Kochbuch-Strukturen

Menu Item Operations

+ addMenultem(_:) — Fligt neues Menu-Item hinzu

+ updateMenultem(_:) — Aktualisiert bestehendes Item

+ deleteMenultem(_:) — Léscht Item mit allen Descendants

* moveMenultem(_:to:) — Verschiebt Item zu neuem Parent
* reorderltems(in:from:to:) — Sortiert ltems innerhalb Parent

Preset Operations

+ addPreset(_:in:) — Erstellt Preset + Menu-ltem
+ updatePreset(_:) — Aktualisiert Preset + Menu-ltem
+ deletePreset(_:) — Entfernt Preset + Menu-ltem

Query Helpers

» children(of:) — Kinder eines Parents (nil = Root)
+ path(to:) — Breadcrumb-Pfad zu einem Item
+ preset(withlD:) — Preset anhand ID laden

Seite 1 | AILO Pre-Prompt Management v1.0

AILO Handbuch | Teil 2: Services & Business Logic

+ presets(in:) — Alle Presets in Ordner (rekursiv)

PrePromptMenultem

Reprasentiert ein Element in der hierarchischen Menustruktur. Kann entweder ein Ordner
(Container) oder eine Referenz auf ein Preset sein. Unterstitzt unbegrenzte
Verschachtelungstiefe.

Eigenschaften

Feld Typ Beschreibung

id uuID Eindeutige ltem-ID

parentID uuID? Parent-ID (nil = Root-Level)

name String Anzeigename im Men

icon String Emoji-Icon

keywords String Semikolon-getrennte Schlagworter
sortOrder Int Sortierreihenfolge

presetID uuiD? Verweis auf Preset (nil = Ordner)

Computed Properties

* isFolder: Bool — true wenn presetID == nil
* isPreset: Bool — true wenn presetlD != nil
* keywordPairs: [(key, value)] — Geparste Key-Value-Paare

Factory Methods

° PrePromptMenultem.folder (name:icon:keywords:parentID:sortOrder:)
. PrePromptMenultem.preset (name:icon:keywords:parentID:sortOrder:presetID:)

AlPrePromptPreset

Enthalt den eigentlichen Pre-Prompt-Text sowie Metadaten. Wird Uber PrePromptMenultem
im Menu referenziert und kann in Rezepten kombiniert werden.

Eigenschaften

Feld Typ Beschreibung

id uuID Eindeutige Preset-ID

name String Anzeigename

text String Der eigentliche Prompt-Text

icon String Emoji-Icon

keywords String Variablen-Definitionen (key:value;...)
isDefault Bool Standard-Preset markiert
PrePromptRecipe

Ein Rezept kombiniert mehrere Presets und Ordner zu einem komplexen Prompt-Workflow.
Kategorien werden zu Uberschriften, Presets liefern den Inhalt. Keywords werden
hierarchisch vererbt und kénnen Gberschrieben werden.

Eigenschaften

Seite 2 | AILO Pre-Prompt Management v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Feld Typ Beschreibung

id uuIiD Eindeutige Rezept-ID

name String Rezept-Name

icon String Emoji-Icon

keywords String Rezept-spezifische Keywords
elementIDs [UUID] Geordnete Liste der Elemente
separator String Trennzeichen zwischen Elementen
Kernmethoden

+ generatePrompt(from:presets:) — String — Kombinierter Prompt-Text
+ collectKeywords(from:presets:) — [(key, value)] — Alle Keywords

Cookbook & RecipeMenultem

Ein Cookbook ist eine Sammlung von Rezepten, organisiert in Kapiteln. RecipeMenultem
bildet die hierarchische Struktur innerhalb eines Kochbuchs ab — analog zu
PrePromptMenultem fir den Preset-Katalog.

Cookbook-Eigenschaften

* id: vvuIlD - Eindeutige Kochbuch-ID

* name: String— Kochbuch-Name

* icon: String— Emoji-lcon

* keywords: String— Kochbuch-Keywords
* sortOrder: Int — Sortierreihenfolge

RecipeMenultem
Kann ein Kapitel (isChapter) oder eine Rezept-Referenz (recipelD) sein:

* cookbookID: UUID - Zugehoriges Kochbuch
* parentID: UUID? — Parent-Kapitel
* recipelID: UUID? — Verweis auf Rezept (nil = Kapitel)

Persistierung

Alle Daten werden Uber UserDefaults als JSON persistiert. Bei der ersten Initialisierung
werden Standard-Kategorien und Demo-Presets erstellt.

UserDefaults Keys

Key Inhalt
kPrePromptMenuKey Hierarchische Menustruktur
kAlPresetsKey Alle Pre-Prompt-Presets
kPrePromptRecipesKey Rezept-Definitionen
kCookbooksKey Kochbuch-Metadaten
kRecipeMenuKey Kochbuch-Strukturen
kCataloglnitializedKey First-Launch-Flag
Export/Import

Seite 3 | AILO Pre-Prompt Management v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Der gesamte Katalog kann als JSON exportiert und importiert werden. Dies ermdglicht
Backup, Sharing und Migration zwischen Geraten.
CatalogExport-Struktur

* version: Int— Schema-Version (aktuell: 1)
* exportDate: Date — Zeitpunkt des Exports

. menultems, presets, recipes, cookbooks, recipeMenultems

Methoden

+ exportCatalog() — Data? — JSON-Export
+ importCatalog(from:) — Bool — JSON-Import mit Validierung

Standard-Kategorien
Bei Erstinstallation werden folgende Kategorien automatisch erstellt:
Icon Kategorie Beschreibung
& Mail Haupt-Kategorie fiir E-Mail-Prompts
O] Reply Antwort-Vorlagen (unter Mail)
G| Forward Weiterleitungs-Vorlagen (unter Mail)
Q Analyze Analyse-Prompts (unter Mail)
= 4 Notes Notizen und Protokolle
General Allgemeine Prompts
Migration

Das System unterstitzt automatische Migration von Legacy-Daten:

+ migrateFromLegacy(): Verschiebt bestehende Presets in "Migriert"-Ordner
+ migrateRecipesToCookbook(): Erstellt Standard-Kochbuch fir lose Rezepte

Technische Hinweise

ObservableObject: @Published Properties ermdéglichen reaktive SwiftUl-Updates
Codable: Alle Modelle sind JSON-serialisierbar fiir Persistenz und Export
Sendable: Thread-sichere Modelle fur Swift Concurrency

Keywords: Format "key:value;key2:value2" fir Template-Interpolation
Hierarchie: Unbegrenzte Verschachtelungstiefe Uber parentID-Referenzen

AILO Handbuch — Kapitel 2.5 Pre-Prompt Management
Version 1.0 | Dezember 2025

Seite 4 | AILO Pre-Prompt Management v1.0

AILO Handbuch | Teil 2: Services & Business Logic

2.6 Audio & Speech

Views/Sprechen/ + Live-Transkription mit AVFoundation & Speech Framework

Ubersicht

Das Audio & Speech System in AILO ermdglicht Sprachaufnahmen mit Live-Transkription.
Es nutzt AVFoundation fur Audio-Recording und das Speech Framework fir Echtzeit-
Spracherkennung mit automatischer Chunk-basierter Verarbeitung und Silence Detection.

Komponente Beschreibung

AudioRecorder AVFoundation-basierte Audio-Aufnahme mit Pegel-Metering
LiveTranscriber Echtzeit-Spracherkennung mit SFSpeechRecognizer
RecordingState ObservableObiject fir Ul-State-Management
SprechenView SwiftUl-View fir Aufnahme und Transkription
AudioRecorder

Die AudioRecorder-Klasse kapselt AVAudioRecorder fir hochwertige Audio-Aufnahmen im
m4a-Format. Implementiert als ObservableObject mit AVAudioRecorderDelegate fur SwiftUl-
Integration.

Published Properties

Property Typ Beschreibung
isRecording Bool Aufnahme aktiv

isPaused Bool Aufnahme pausiert

elapsed Timelnterval Verstrichene Zeit in Sekunden
level Float Aktueller Audiopegel (dB)
Methoden

+ startRecording(to:sensitivity:) — Startet Aufnahme mit Mikrofon-Empfindlichkeit
+ pause() — Pausiert die laufende Aufnahme

* resume() — Setzt pausierte Aufnahme fort

+ stop(completion:) — Beendet Aufnahme mit Callback fir URL

Audio-Einstellungen

Parameter Wert

Format MPEG4 AAC (kAudioFormatMPEG4AAC)
Sample Rate 44,100 Hz

Channels 1 (Mono)

Bitrate 128.000 bps

Quality AVAudioQuality.high

Output .m4a Datei

AVAudioSession-Konfiguration

+ Category: .playAndRecord

* Mode: .default

+ Options: .defaultToSpeaker

* Input Gain: Einstellbar Gber Mikrofon-Empfindlichkeit (0.0-1.0)

Seite 1 | AILO Audio & Speech v1.0

AILO Handbuch | Teil 2: Services & Business Logic

LiveTranscriber
Die LiveTranscriber-Klasse implementiert Echtzeit-Spracherkennung mit dem Speech

Framework. Nutzt AVAudioEngine fir Audio-Streaming und SFSpeechRecognizer fir die
Transkription mit automatischer Chunk-Verarbeitung.

Published Properties

Property Typ Beschreibung
combinedText String Gesamter transkribierter Text (alle Chunks)
currentChunk String Aktueller, noch nicht finalisierter Chunk

Konfigurationsoptionen

Option Typ Beschreibung

localeCode String Sprache ("auto" oder Locale-ID)
partialResultsEnabled Bool Zwischenergebnisse aktiviert
onDeviceOnly Bool Nur On-Device Recognition
amplitudeThreshold Float Schwellwert fiir Stille-Erkennung
micSensitivity Double Mikrofon-Empfindlichkeit (0.0-1.0)
Methoden

+ applyConfig(...) — Konfiguration setzen und Threshold berechnen

+ start() — Startet Engine und Spracherkennung

+ stop() — Beendet Recognition und committed letzten Chunk

+ reset() — Setzt alle States zurtick

+ previewText() — String — Kombiniert combinedText + aktuelles Delta

Silence Detection
Der LiveTranscriber implementiert automatische Stille-Erkennung zur intelligenten Chunk-

Segmentierung. Dies ermdglicht natlirliche Pausen im Sprachfluss und vermeidet tbergrolte
Transkriptionsblocke.

Funktionsweise

1. Audio-Buffer wird Gber AVAudioEngine empfangen (1024 Frames)

2. RMS-Amplitude wird per vDSP_measqv berechnet

3. Vergleich mit amplitudeThreshold (konfigurierbar)

4. Bei Stille: Timer startet (silenceHold = 0.8s)

5. Nach Ablauf: commitCurrentChunk() wird aufgerufen
Parameter
Parameter Wert Beschreibung
silenceHold 0.8 Sekunden Haltezeit bevor Chunk finalisiert
minThreshold 0.003 (~-50 dB) Hohe Empfindlichkeit
maxThreshold 0.02 (~-34 dB) Niedrige Empfindlichkeit
bufferSize 1024 Frames Audio-Buffer-GroRe

Chunk-basierte Transkription

Seite 2 | AILO Audio & Speech v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Die Transkription erfolgt in Chunks, die bei Sprechpausen automatisch finalisiert werden.
Dies ermdglicht flissige Echtzeit-Anzeige und verhindert Duplikate.

Deduplizierung
Die commitCurrentChunk()-Methode implementiert mehrere Deduplizierungs-Strategien:

Delta-Berechnung: Nur neue Textteile werden extrahiert
lastCommitted-Vergleich: Identische Chunks werden Gbersprungen
Suffix-Check: Prifung ob Text bereits am Ende vorhanden
Line-Check: Vergleich mit letzter Zeile in combinedText

On-Device Recognition

AILO unterstutzt On-Device Spracherkennung fir datenschutzsensible Anwendungen. Die
Audiodaten verlassen das Gerat nicht, wenn dieser Modus aktiviert ist.

Voraussetzungen
* i0OS 13.0+ erforderlich
* Prifung via recognizer.supportsOnDeviceRecognition
* Sprachpaket muss heruntergeladen sein
» Fallback auf Server-Recognition wenn nicht verfugbar
Aktivierung

* UserDefaults Key: config.speechOnDeviceOnly
* Request Property: requiresOnDeviceRecognition = true

Konfiguration

Die Spracheinstellungen werden tber UserDefaults persistiert und in der Settings-View
konfiguriert.

UserDefaults Keys

Key Beschreibung

config.speech.lang Sprach-Code (z.B. "de-DE", "en-US")
config.speechOnDeviceOnly On-Device Recognition aktiviert
config.speechPartial Zwischenergebnisse aktiviert
config.micSensitivity Mikrofon-Empfindlichkeit (0.0-1.0)
SprechenView

Die SwiftUl-View integriert AudioRecorder und LiveTranscriber fur eine nahtlose
Benutzeroberflache mit Pegel-Anzeige, Live-Transkript und Speicherfunktion.

Ul-Komponenten

Titel-Eingabe: TextField fir optionalen Eintragstitel

Level Meter: Capsule-basierte Pegel-Anzeige (griin/gelb/rot)
Zeitanzeige: Verstrichene Aufnahmezeit (mm:ss)
Steuerung: Start/Stop/Pause-Buttons

Seite 3 | AILO Audio & Speech v1.0

AILO Handbuch | Teil 2: Services & Business Logic

* Transkript: ScrollView mit Auto-Scroll zum Ende
* Speichern: Button zum Sichern als Log-Eintrag

State-Management
* (@StateObject audio: AudioRecorder-Instanz
+ (@StateObject live: LiveTranscriber-Instanz
* (@State transcript: Finalisierter Transkript-Text

@EnvironmentObject store: DataStore flir Log-Speicherung

Technische Hinweise

Berechtigungen: Mikrofon + Spracherkennung miissen genehmigt sein
Delegate: AVAudioRecorderDelegate fiir Finish-Callback

RunLoop: Timer wird mit .common Mode registriert

Accelerate: vDSP fur performante RMS-Berechnung

Memory: [weak self] in allen Closures zur Vermeidung von Retain Cycles
Session: Deaktivierung mit .notifyOthersOnDeactivation nach Aufnahme

AILO Handbuch — Kapitel 2.6 Audio & Speech
Version 1.0 | Dezember 2025

Seite 4 | AILO Audio & Speech v1.0

AILO Handbuch | Teil 2: Services & Business Logic

2.7 Sicherheit

Services/Security/ & Helpers/Security/ + Keychain, SIMIME & Verschlisselung

Ubersicht

Das Sicherheits-System in AILO gewahrleistet den sicheren Umgang mit sensiblen Daten.
Es nutzt den iOS/macOS Keychain fur Passworter und Zertifikate, implementiert S/IMIME-
Signierung fur E-Mails und stellt sicher, dass keine Credentials im Klartext gespeichert
werden.

Komponente Beschreibung

KeychainService Passwort- und Token-Speicherung im System-Keychain
KeychainCertificateService S/MIME-Zertifikatsverwaltung und P12-Import
SMIMESigningService Digitale Signierung ausgehender E-Mails
SMIMEVerificationService Signatur-Verifizierung eingehender E-Mails
KeychainService

Der KeychainService ist ein leichtgewichtiger Wrapper um das iOS/macOS Security
Framework. Er speichert sensible Strings wie Passworter und OAuth-Tokens sicher im
System-Keychain.

Basis-API

Methode Beschreibung

set(_:for:) Speichert String-Wert fiir Key — Bool
get(_:) Liest String-Wert fir Key — String?
delete(_:) Léscht Keychain-Eintrag — Bool

Passwort-Typen (PasswordKind)

* .recv — IMAP-Empfangspasswort (Prefix: mail.recv)
* .smtp — SMTP-Sendepasswort (Prefix: mail.smtp)

Token-Typen (TokenKind)

* .recv — OAuth-Token fur IMAP (Prefix: mail.oauth.recv)
* .smtp — OAuth-Token fir SMTP (Prefix: mail.oauth.smtp)

Convenience-API

setPassword(_:kind:accountld:) — Passwort fir Account speichern
password(kind:accountld:) — String? — Passwort abrufen
setToken(_:kind:accountld:) — OAuth-Token speichern
token(kind:accountld:) — String? — OAuth-Token abrufen

Keychain-Attribute

Attribut Wert
kSecClass kSecClassGenericPassword
kSecAttrService Bundle Identifier (App-spezifisch)

Seite 1 | AILO Sicherheit v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Attribut Wert
kSecAttrAccount Zusammengesetzter Key (kind.accountld)
kSecAttrAccessible kSecAttrAccessibleAfterFirstUnlock

KeychainCertificateService

Der KeychainCertificateService verwaltet S/IMIME-Zertifikate im System-Schlisselbund. Er
ermdglicht das Auflisten, Importieren und Léschen von Identities (Zertifikat + Private Key).

Kernmethoden

+ listSigningCertificates() — [SigningCertificatelnfo]

+ loadldentity(certificateld:) — Secldentity?

+ importP12(data:password:) — Result<SigningCertificatelnfo, P12ImportError>
+ deleteCertificate(certificateld:) — Bool

SigningCertificatelnfo

Feld Typ Beschreibung

id String Base64-encodierte Persistent Reference
displayName String Subject Summary des Zertifikats

email String? E-Mail-Adresse aus Zertifikat
explresAt Date? Ablaufdatum (falls extrahierbar)
identity Secldentity Referenz auf Keychain-ldentity

P12-Import-Prozess

P12-Datei mit SecPKCS12Import und Passwort 6ffnen
Identity (kSecImportltemldentity) extrahieren

Zertifikat via SecldentityCopyCertificate erhalten
Private Key via SecldentityCopyPrivateKey erhalten
Zertifikat in Keychain speichern (kSecClassCertificate)
Private Key in Keychain speichern (kSecClassKey)

ok wh~

P12ImportError

Fehlertyp Beschreibung

.wrongPassword Falsches Passwort fir P12-Datei
.invalidFile Ungiiltiges P12/PFX-Dateiformat
.noldentityFound Keine Identity in P12 gefunden
.certificateError Zertifikat konnte nicht extrahiert werden
.privateKeyError Private Key konnte nicht extrahiert werden
.keychainError(OSStatus) Keychain-Operation fehlgeschlagen

SMIMESigningService

Der SMIMESigningService signiert ausgehende E-Mails digital gemafl RFC 5751 (S/MIME).
Die Signatur garantiert Authentizitat und Integritat der Nachricht.

Public API

+ signMessage(mimeContent:certificateld:) — Result<Data, SigningError>
+ canSign(certificateld:) — Bool — Pruft Zertifikat-Verfligbarkeit

Seite 2 | AILO Sicherheit v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Plattform-Implementierungen

Plattform Implementierung

macOS CMSEncoder API fiir native CMS/PKCS#7-Signierung

i0S Manuelle CMS-Konstruktion mit Security Framework +
CommonCrypto

macOS: CMSEncoder-Workflow

7. CMSEncoderCreate() — Encoder initialisieren

8. CMSEncoderAddSigners() — Identity hinzufiigen

9. CMSEncoderAddSupportingCerts() — Zertifikat-Kette

10. CMSEncoderSetHasDetachedContent(true) — Detached Signature
11. CMSEncoderAddSignedAttributes(.attrSigningTime)

12. CMSEncoderUpdateContent() — MIME-Content tGbergeben

13. CMSEncoderCopyEncodedContent() — Signatur erhalten

iOS: Manuelle CMS-Konstruktion

14. Schlissel-Algorithmus bestimmen (RSA/EC)

15. SHA-256 Digest des MIME-Contents berechnen (CommonCrypto)
16. Signerinfo ASN.1-Struktur aufbauen

17. Signatur mit SecKeyCreateSignature erstellen

18. multipart/signed MIME-Nachricht assemblieren

SigningError

* .certificateNotFound — Zertifikat nicht im Keychain

* .certificateError — Zertifikat konnte nicht geladen werden
* .privateKeyError — Private Key nicht verfigbar

* .signingFailed(String) — Allgemeiner Signierfehler

S/MIME Signaturformat

Die signierte Nachricht wird als multipart/signed gemafR RFC 5751 aufgebaut. Die Signatur
ist "detached", d.h. der Original-Content bleibt lesbar.

MIME-Struktur

+ Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-
256

+ Part 1: Original MIME-Content (text/plain, text/html, etc.)

» Part 2: application/pkcs7-signature (Base64-encoded)

Unterstutzte Algorithmen

Schliisseltyp Signatur-Algorithmus Hash-Algorithmus
RSA rsaSignatureMessagePKCS1v15SHA256 SHA-256
EC (P-256) ecdsaSignatureMessageX962SHA256 SHA-256

Sicherheitsprinzipien

AILO folgt etablierten Sicherheitsprinzipien fir den Umgang mit sensiblen Daten:

Seite 3 | AILO Sicherheit v1.0

AILO Handbuch | Teil 2: Services & Business Logic

Daten im Ruhezustand

+ Passworter: Nur im System-Keychain, nie in UserDefaults oder Dateien

* API-Keys: Im Keychain mit kSecAttrAccessibleAfterFirstUnlock

+ Zertifikate: Im System-Schlusselbund mit
kSecAttrAccessibleWhenUnlockedThisDeviceOnly

+ Private Keys: Nur Uber Secldentity-Referenz, nie als Raw-Data exportiert

Daten in Ubertragung

* IMAP/SMTP: TLS 1.2+ erzwungen (STARTTLS oder IMAPS/SMTPS)
+ API-Calls: HTTPS mit Certificate Pinning (optional)
+ E-Mail-Content: Optional S/IMIME-signiert fur Authentizitat

Zugriffskontrolle

* App-Sandbox: Strikte iOS/macOS Sandbox-Isolation
+ Keychain-Scoping: Service = Bundle-ID flr App-spezifische Eintrage
+ Keine Cloud-Sync: Sensible Daten verlassen das Gerat nicht

Technische Hinweise

Singleton Pattern: Beide Services als .shared fur globalen Zugriff
OSStatus-Handling: Alle Security-Funktionen prifen Return-Codes
Conditional Compilation: #if os(macOS) fir plattformspezifischen Code
Duplicate Handling: errSecDuplicateltem wird als Erfolg gewertet
Memory Safety: SecKey/SecCertificate-Referenzen werden nicht kopiert
Lokalisierung: Alle Fehlermeldungen Uber String(localized:)

AILO Handbuch — Kapitel 2.7 Sicherheit
Version 1.0 | Dezember 2025

Seite 4 | AILO Sicherheit v1.0

AILO Handbuch | Teil 3: Data Access Layer

3.1 Database Schema

Database/Schema/ + SQLite Tabellen-Definitionen & Migrationen

Ubersicht

Das AILO Database Schema definiert die SQLite-Tabellenstruktur fur E-Mail-Persistenz. Es
umfasst Tabellen fir Accounts, Ordner, Nachrichten, Anhange und die Outbox-Queue. Das
Schema unterstutzt versionierte Migrationen und wird iber PRAGMA user_version
verwaltet.

Eigenschaft Wert

Aktuelle Version 5 (MailSchema.currentVersion)
Datenbank-Engine SQLite3 (i0S/macOS native)

Datei MailSchema.swift

Pfad Database/Schema/
Tabellen-Ubersicht

Tabelle Beschreibung

accounts E-Mail-Account-Konfigurationen

folders IMAP-Ordner pro Account
message_header E-Mail-Header (Hot Path, haufig gelesen)
message_body E-Mail-Body (Lazy Loading)

attachment Anhange mit Metadaten und Blob-Speicher
outbox Ausgehende E-Mails (Queue)

mime_parts Strukturierte MIME-Parts

render_cache Gerenderte HTML/Text-Versionen
blob_meta Blob-Deduplizierung und Reference Counting
accounts

Speichert E-Mail-Account-Konfigurationen. Passworter werden NICHT hier gespeichert,
sondern im Keychain.

Spalte Typ Beschreibung

id TEXT PK UUID des Accounts
display name TEXT Anzeigename

email address TEXT E-Mail-Adresse

host imap TEXT IMAP-Server Hostname
host smtp TEXT SMTP-Server Hostname
created at INTEGER Erstellungsdatum (Epoch)
updated at INTEGER Anderungsdatum (Epoch)
signing enabled INTEGER S/MIME-Signierung aktiviert (v5)
signing cert id TEXT Keychain-Zertifikat-ID (v5)
folders

IMAP-Ordner mit Special-Use-Flags und Attributen. Composite Primary Key aus account _id
+ name.

Spalte Typ Beschreibung
account_id TEXT PK Zugehoriger Account

Seite 1 | AILO Database Schema v1.0

Spalte

name
special use
delimiter
attributes

Typ
TEXT PK

TEXT
TEXT
TEXT

message_header

AILO Handbuch | Teil 3: Data Access Layer

Beschreibung

Ordnername (z.B. "INBOX")

Spezialverwendung (inbox, sent, drafts, trash, spam)
Hierarchie-Trennzeichen (z.B. "/")

IMAP-Flags (\Noselect, \HasNoChildren, etc.)

E-Mail-Header fiir schnellen Listen-Zugriff. Hot Path — haufig gelesen, selten geschrieben.
Index auf (account_id, folder, date DESC).

Spalte
account id
folder

uid

from addr
subject
date

flags

has attachments

message_body

Typ
TEXT PK

TEXT PK
TEXT PK
TEXT
TEXT
INTEGER
TEXT
INTEGER

Beschreibung

Zugehdriger Account

Ordnername

IMAP UID (eindeutig im Ordner)
Absender-Adresse

Betreff

Datum (Epoch Sekunden)
IMAP-Flags (\Seen, \Flagged, etc.)
Hat Anhange (0/1)

E-Mail-Body mit Text/HTML-Inhalt. Lazy Loading — wird erst bei Detailansicht geladen. Seit
v3 mit raw_body fur Forensik.

Spalte
account id
folder

uid

text body
html body

has attachments

raw_body

content type

charset

transfer encoding
is multipart

raw_size

processed at

attachment

Typ
TEXT PK

TEXT PK
TEXT PK
TEXT
TEXT
INTEGER
TEXT
TEXT
TEXT
TEXT
INTEGER
INTEGER
INTEGER

Beschreibung
Zugehoriger Account
Ordnername

IMAP UID

Plain-Text Version

HTML Version

Hat Anhange (0/1)

Roher MIME-Body (v3)
MIME Content-Type (v2)
Zeichensatz (v2)
Transfer-Encoding (v2)
Multipart-Nachricht (v2)
Rohe Grof3e in Bytes (v2)
Verarbeitungszeitpunkt (v2)

Anhange mit Metadaten, Blob-Speicher und Deduplizierung. Unterstitzt Inline-Attachments
(CID) und externe Dateipfade.

Spalte
account id
folder

uid

part id
filename
mime type
size bytes
data
content id
is_inline

Typ
TEXT PK
TEXT PK
TEXT PK
TEXT PK
TEXT
TEXT
INTEGER
BLOB
TEXT
INTEGER

Beschreibung
Zugehoriger Account
Ordnername

IMAP UID

MIME Part-ID (z.B. "1.2")
Dateiname

MIME-Typ

GroRe in Bytes
Binardaten (optional)
CID fir Inline-Attachments (v2)
Inline-Attachment (v2)

Seite 2 | AILO Database Schema v1.0

AILO Handbuch | Teil 3: Data Access Layer

Spalte Typ Beschreibung

file path TEXT Externer Dateipfad (v2)
checksum TEXT SHA256 fiir Deduplizierung (v2)
outbox

Queue fir ausgehende E-Mails mit Retry-Logik. Status: pending, sending, sent, failed,
cancelled.

Spalte Typ Beschreibung

id TEXT PK UUID der Outbox-Nachricht
account_id TEXT Absender-Account

created at INTEGER Erstellungszeitpunkt

last attempt at INTEGER Letzter Versuch

attempts INTEGER Anzahl Versuche

status TEXT Status (pending/sending/sent/failed)
last_error TEXT Letzter Fehlertext

from addr TEXT Absender

to_addr TEXT Empfanger (kommagetrennt)
cc_addr TEXT CC-Empfanger

bce addr TEXT BCC-Empféanger

subject TEXT Betreff

text body TEXT Plain-Text Body

html body TEXT HTML Body
attachments json TEXT Anhange als JSON (v4)
Blob Storage Tabellen

Zuséatzliche Tabellen fir MIME-Strukturierung, Render-Cache und Blob-Deduplizierung.

mime_parts

* id: TEXT PRIMARY KEY

* message_id, part_number: Referenz zur Nachricht
* content_type, content_subtype: MIME-Typ

* is_attachment, is_inline: Attachment-Flags

* parent_part_number: Hierarchie fir Multipart

render_cache

+ message_id: TEXT PRIMARY KEY
* html_rendered, text_rendered: Gerenderte Versionen
+ generated_at, generator_version: Cache-Invalidierung

blob_meta

blob_id: TEXT PRIMARY KEY

* hash_sha256: SHA256-Hash fur Deduplizierung

+ reference_count: Anzahl Referenzen (Reference Counting)
* size_bytes, created_at, last_accessed: Metadaten

Indizes

Seite 3 | AILO Database Schema v1.0

AILO Handbuch | Teil 3: Data Access Layer

Index Spalten / Zweck

idx_header_date (account_id, folder, date DESC) — Sortierte Listen
idx_outbox_pending (status, created_at) — Pending-Queue-Abfrage
idx_attachment_checksum (checksum) WHERE NOT NULL — Deduplizierung
idx_body_processed_at (processed_at) WHERE NOT NULL — Migration-Tracking

Schema-Migration

Das Schema unterstitzt automatische Migrationen tber PRAGMA user_version. Jede
Version fligt neue Spalten oder Tabellen hinzu.

Versions-Historie

Version Anderungen

vi Initiales Schema mit allen Basistabellen

v2 Enhanced metadata: content_type, charset, transfer_encoding, is_multipart, checksum,
is_inline

v3 raw_body fiir Forensik, .eml-Export, Phishing-Detection

v4 attachments_json in outbox fiir ausgehende Anhénge

v5 signing_enabled, signing_cert_id fir S/IMIME-Signierung

Migration-API

+ createStatements(for:) — [String] — DDL flr Version

* migrationSteps(from:to:) — [[String]] — Schrittweise Migrationen

+ migratelfNeeded(readUserVersion:exec:writeUserVersion:) — Automatische
Migration

Entity Models

Leichtgewichtige Swift-Structs fur type-safe Datenzugriff. Alle Entities sind Sendable und
Equatable.

* AccountEntity — id, displayName, emailAddress, hostIMAP, hostSMTP

* FolderEntity — accountld, name, specialUse, delimiter, attributes

+ MessageHeaderEntity — accountld, folder, uid, from, subject, date, flags,
hasAttachments

+ MessageBodyEntity — text, html, rawBody, contentType, charset, transferEncoding

+ AttachmentEntity — partld, filename, mimeType, sizeBytes, data, contentld, isInline

+ OutboxItemEntity — id, accountld, status, attempts, from, to, subject,
attachmentsJson

+ OutboxAttachment — filename, mimeType, dataBase64 (Codable fir JSON)

Technische Hinweise

+ Composite Primary Keys: (account_id, folder, uid) fir eindeutige
Nachrichtenreferenz

Epoch Timestamps: Alle Datums-Felder als INTEGER (Unix-Sekunden)
Nullable Spalten: TEXT-Felder ohne NOT NULL fiir optionale Metadaten
CREATE IF NOT EXISTS: Idempotente DDL-Statements

ALTER TABLE: Spalten werden nur hinzugeflgt, nie entfernt (Backward
Compatibility)

+ Partial Index: WHERE-Klauseln fur effiziente Indizes

Seite 4 | AILO Database Schema v1.0

AILO Handbuch | Teil 3: Data Access Layer

AILO Handbuch — Kapitel 3.1 Database Schema
Version 1.0 | Dezember 2025

Seite 5 | AILO Database Schema v1.0

AILO Handbuch | Teil 3: Data Access Layer

3.2 DAO Implementations

Database/DAO/ « Spezialisierte Data Access Objects

Ubersicht

Die DAO-Architektur in AILO folgt dem Repository-Pattern mit spezialisierten Data Access

Objects. Die monolithische MailDAO wurde in spezialisierte DAOs aufgeteilt, die Uber eine

zentrale DAOFactory verwaltet werden. Dies ermdglicht bessere Testbarkeit, Separation of
Concerns und Performance-Optimierungen.

DAO Verantwortlichkeit

BaseDAO Basis-Klasse mit SQLite-Verbindung und Transaktionen
AccountDAO Account CRUD und Settings

FolderDAO Ordner-Hierarchie und Special Folders

MailReadDAO Lese-Operationen (Headers, Body, Attachments)
MailWriteDAO Schreib-Operationen (Insert, Update, Delete)
AttachmentDAO Anhang-Management mit File Storage

OutboxDAO Queue-Management fir ausgehende Mails
DAOFactory Zentrale Factory und Connection-Sharing
BaseDAO

Die abstrakte Basis-Klasse fur alle DAOs. Stellt SQLite-Verbindung, Thread-Synchronisation
und Transaktionsunterstutzung bereit.

Eigenschaften

+ db: OpaquePointer? — SQLite-Verbindung
+ dbPath: String — Pfad zur Datenbank-Datei
+ dbQueue: DispatchQueue — Thread-sichere Serialisierung

Kernmethoden

Methode Beschreibung

openDatabase() Offnet SQLite-Verbindung
closeDatabase() SchlieRt Verbindung

ensureOpen() Stellt offene Verbindung sicher
setSharedConnection(_:) Setzt geteilte Verbindung von DAOFactory
exec(_:) Fihrt SQL-Statement aus
withTransaction(_:) Fihrt Closure in Transaktion aus
AccountDAO

Verwaltet E-Mail-Account-Konfigurationen. Implementiert CRUD-Operationen fur
AccountEntity.

Protocol: AccountDAO

+ create(_:) — Neuen Account anlegen
+ get(id:) — AccountEntity? — Account laden
+ getAll() — [AccountEntity] — Alle Accounts

Seite 1 | AILO DAO Implementations v1.0

AILO Handbuch | Teil 3: Data Access Layer

* update(_:) — Account aktualisieren
+ delete(id:) — Account I6schen
+ getByEmail(_:) — AccountEntity? — Suche per E-Mail

FolderDAO

Spezialisiert auf Ordner-Management mit Hierarchie-Support und Special-Folder-Mapping.

Protocol: FolderDAO

Methode Beschreibung

store(_:) Ordner speichern/aktualisieren
get(accountld:name:) Einzelnen Ordner laden

getAll(for:) Alle Ordner eines Accounts
getSpecialFolders(for:) Special Folders Mapping [String: String]
updateSpecialFolders(for:mapping:) Special Folders setzen
getFolderHierarchy(for:) [FolderHierarchyNode] — Baumstruktur
updateFolderAttributes(...) IMAP-Attribute aktualisieren
removeFoldersNotin(...) Verwaiste Ordner entfernen
getFolderStats(for:) [FolderStats] — Statistiken

Supporting Types

* FolderHierarchyNode: folder + children[] — Rekursive Baumstruktur
+ FolderStats: folderName, messageCount, unreadCount, totalSizeBytes

MailReadDAO

Optimiert fir Lese-Operationen. Hot Path fir Listen-Ansichten und Message-Details.

Kern-Operationen

Methode Riickgabe
headers(accountld:folder:limit:offset:) [MailHeader]
body(accountld:folder:uid:) String?
bodyEntity(accountid:folder:uid:) MessageBodyEntity?
attachments(accountid:folder:uid:) [AttachmentEntity]
attachmentStatus(accountid:folder:) [String: Bool]
getMimeParts(messageld:) [MimePartEntity]
getRenderCache(messageld:) RenderCacheEntry?
getBlobMeta(bloblid:) BlobMetaEntry?

Blob Storage Analytics

+ getBlobStorageMetrics() — BlobStorageMetrics
+ getOrphanedBlobs() — [String] — Unreferenzierte Blobs
+ getBlobsOlderThan(_:) — [String] — Fir Cleanup

MailWriteDAO

Alle schreibenden Operationen fiir Nachrichten, Bodies, MIME-Parts und Caches.

Message Operations

Seite 2 | AILO DAO Implementations v1.0

AILO Handbuch | Teil 3: Data Access Layer

insertHeaders(accountld:folder:headers:)
storeBody(accountld:folder:uid:body:)
updateFlags(accountld:folder:uid:flags:)
deleteMessage(accountld:folder:uid:)
purgeFolder(accountld:folder:)

MIME & Cache Operations

storeMimeParts(_:) — [MimePartEntity] speichern
storeRenderCache(messageld:html:text:generatorVersion:)
invalidateRenderCache(messageld:)
storeBlobMeta(blobld:hashSha256:sizeBytes:)
incrementBlobReference(_:) / decrementBlobReference(_:)

AttachmentDAO

Spezialisiertes Attachment-Management mit File-Storage und automatischer Deduplizierung
basierend auf SHA256-Checksums.

Konfiguration

Parameter Beschreibung

attachmentsDirectory URL fiir File-Storage (Documents/Attachments)
maxInlineSize Schwelle fiir Blob vs. File (Default: 1MB)
deduplicationEnabled SHA256-basierte Deduplizierung aktiv

Protocol: AttachmentDAO

store(accountld:folder:uid:attachment:)
getAll(accountld:folder:uid:) — [AttachmentEntity]
getAttachmentData(attachment:) — Data?
delete(accountld:folder:uid:partid:)
cleanupOrphanedFiles() — Verwaiste Dateien |6schen
getStorageMetrics() — AttachmentStorageMetrics

OutboxDAO (MailOutboxDAO)

Queue-Management fur ausgehende E-Mails mit Retry-Logik und Status-Tracking.

Protocol: MailOutboxDAO

Methode Beschreibung

enqueue(_:) Nachricht in Queue einfiigen
getPendingltems(for:limit:) Pending ltems abrufen
updateStatus(id:status:error:) Status aktualisieren
markAsSending(id:) Status — sending
markAsSent(id:) Status — sent
markAsFailed(id:error:) Status — failed + Fehlertext
incrementAttempts(id:) Versuchszahler erhéhen
removeSentitems(olderThan:) Alte gesendete ltems I6schen
removeFailedltems(maxAge:) Alte fehlgeschlagene Iéschen
Status-Workflow

Seite 3 | AILO DAO Implementations v1.0

abhwn-~

AILO Handbuch | Teil 3: Data Access Layer

pending — In Queue, wartet auf Verarbeitung
sending — Wird gerade gesendet

sent — Erfolgreich gesendet

failed — Fehlgeschlagen (mit lastError)
cancelled — Vom Benutzer abgebrochen

DAOFactory

Zentrale Factory fur DAO-Erstellung und Connection-Sharing. Implementiert Lazy
Initialization und verwaltet eine geteilte SQLite-Verbindung.

Initialization

dbPath: String — Pfad zur SQLite-Datenbank
attachmentsDirectory: URL? — Custom Attachment-Pfad
maxInlineSize: Int — Schwelle fir Inline-Blobs (Default: 1MB)
deduplicationEnabled: Bool — Deduplizierung (Default: true)
maxRetryAttempts: Int — Outbox Retries (Default: 3)

DAO Accessors

mailReadDAO: MailReadDAO

mailWriteDAO: MailWriteDAO

attachmentDAO: AttachmentDAO

outboxDAO: MailOutboxDAO

folderDAO: FolderDAO

accountDAO: AccountDAO

mailFullAccessDAO: MailFullAccessDAO — Kombinierter Zugriff

Database Management

initializeDatabase() — Offnet DB, teilt Connection, erstellt Schema
closeAllConnections() — Schlie3t geteilte Verbindung
validateSchema() — (userVersion, foldersTableExists)
performMaintenance() — Cleanup, VACUUM, ANALYZE
getPerformanceMetrics() — [String: (average, calls)]
resetPerformanceMetrics() — Statistiken zurlicksetzen

Migration von Legacy-MailDAO

Fir schrittweise Migration steht ein LegacyMailDAOAdapter als Kompatibilitatsschicht bereit.

Vorher — Nachher

Alt (MailDAO) Neu (DAOFactory)

mailDAO.headers(...) daoFactory.mailReadDAOQO.headersy(...)
mailDAO.body(...) daoFactory.mailReadDAQO.body(...)
mailDAO.insertHeaders(...) daoFactory.mailWriteDAO.insertHeaders(...)
mailDAO.storeBody(...) daoFactory.mailWriteDAO.storeBodys...)
mailDAO.attachments(...) daoFactory.attachmentDAO.getAll(...)

Technische Hinweise

Seite 4 | AILO DAO Implementations v1.0

AILO Handbuch | Teil 3: Data Access Layer

Connection Sharing: Alle DAOs nutzen dieselbe SQLite-Verbindung
Thread Safety: DispatchQueue.sync fir serialisierten Zugriff

Lazy Initialization: DAOs werden erst bei Zugriff erstellt
Protocol-Based: Alle DAOs haben Protocol + Impl fir Testbarkeit
Performance: 40-60% schnellere Reads durch Spezialisierung
Deduplication: 20-30% Speicherersparnis bei Attachments

AILO Handbuch — Kapitel 3.2 DAO Implementations
Version 1.0 | Dezember 2025

Seite 5 | AILO DAO Implementations v1.0

AILO Handbuch | Teil 3: Data Access Layer

3.3 DAO Utilities

Database/DAO/DAOHelpers.swift «+ SQLite Extensions & Performance Tools

Ubersicht

Die DAO Utilities stellen essenzielle Hilfsfunktionen fiir alle Data Access Objects bereit. Sie
umfassen SQLite-Typ-Extraktion, Performance-Monitoring, Transaktions-Management,
Query-Building und Schema-Validierung.

Komponente Beschreibung

OpaquePointer Extensions SQLite-Typ-Extraktion fiir Spalten
DAOPerformanceMonitor Query-Timing und Metriken-Sammlung
DAOTransactionManager Batch-Operationen in Transaktionen
SQLQueryBuilder Type-safe Query-Konstruktion
DAOSchemaValidator Schema-Validierung und Version-Check

SQLite Type Extensions

Extensions auf OpaquePointer fur typsichere Spalten-Extraktion aus SQLite-Statements.
Alle Methoden sind null-safe und konvertieren SQLite-Typen in Swift-Typen.

Basis-Typen

Methode Riickgabe Beschreibung
columnText (_:) String? Text-Spalte als String
columnInt (_:) Int Integer-Spalte
columnInt64 (_:) Int64 64-Bit Integer
columnDouble (_:) Double FlieRkommazahl
columnBlob (_:) Data? Binary Large Object
columnBool (_:) Bool Boolean (Int != 0)
columnIsNull (_:) Bool Prift auf NULL

Erweiterte Typen

Methode Riickgabe Beschreibung
columnUUID(_:) uuiD? UUID aus TEXT-Spalte
columnDate (_:) Date? Date aus Epoch (Double)
columnStringArray (_:) [String] Kommaseparierte Strings

DAOPerformanceMonitor

Singleton-basiertes Performance-Monitoring fir alle DAO-Operationen. Sammelt Timing-
Metriken und berechnet Durchschnittswerte. Thread-sicher durch DispatchQueue.

Architektur

+ Singleton Pattern: shared Instance fur globalen Zugriff
* Thread Safety: DispatchQueue fur serialisierten Zugriff auf Metriken
* DAOMetric Struct: totalTime, callCount, averageTime (computed)

API

Seite 1 | AILO DAO Utilities v1.0

AILO Handbuch | Teil 3: Data Access Layer

Methode Beschreibung

measure<T>(_:_:) Misst Ausfiihrungszeit eines Blocks — T

getMetrics() [String: (average, calls)] — Alle Metriken

resetMetrics() Setzt alle Metriken zuriick

Verwendung

return try DAOPerformanceMonitor.measure ("headers query") { // ... SQL-
Operationen ... }

Gemessene Operationen

* headers_query, body_query, body_entity _query

« attachments_query, attachment_status_query

* render_cache_query, blob_meta_query, raw_blob_id_query

* blob_storage_metrics_query, orphaned_blobs_query, old_blobs_query
+ store_folder, get_attachment, get_all_attachments

* insert_headers, store_body, update_flags, delete_message

DAOTransactionManager

Verwaltet Batch-Operationen innerhalb von Datenbank-Transaktionen. Erméglicht atomare
Ausfiihrung mehrerer Operationen mit automatischem Rollback bei Fehlern.

Initialisierung

let transactionManager = DAOTransactionManager (baseDAO)

Methoden

Methode Beschreibung

performBatch<T>(_:) Fihrt Array von Closures in Transaktion aus — [T]
performBatchinsert<Entity>(...) Batch-Insert mit konfigurierbarer Chunk-GroRe

performBatchinsert Parameter

+ entities: [Entity] — Zu speichernde Entitaten

+ batchSize: Int = 100 — Chunk-Grofie pro Transaktion

* insertOperation: ([Entity]) throws -> Void — Insert-Closure
Array Chunking Extension

Private Extension auf Array fur effizientes Aufteilen in Batches: chunked(into: Int) —
[[Element]]

SQLQueryBuilder

Fluent API fur type-safe SQL-Query-Konstruktion. Verwendet Builder-Pattern mit
verkettbaren Methoden.

Builder-Kette

1. SQLQueryBuilder.select(...) — SelectBuilder
2. .from(table:) — FromBuilder

Seite 2 | AILO DAO Utilities v1.0

AILO Handbuch | Teil 3: Data Access Layer

.whereCondition(_:) — WhereBuilder (optional)
.orderBy(_:ascending:) — OrderBuilder
Jdimit(_:offset:) — String (finale Query)

.build() — String (an jedem Punkt aufrufbar)

o0k w

Builder-Typen

Builder Verfiigbare Methoden

SelectBuilder from(_:) — FromBuilder

FromBuilder whereCondition(_:), orderBy(_:ascending:), build()
WhereBuilder orderBy(_:ascending:), build()

OrderBuilder limit(_:offset:), build()

Beispiel

let query = SQLQueryBuilder .select ("uid", "from addr", "subject")
.from("message header") .whereCondition ("account id = ?")

.orderBy ("date", ascending: false) .1imit (50, offset: 0)
DAOSchemaValidator

Validiert die Datenbank-Schema-Integritat. Prift Tabellen-Existenz und Schema-Version
uber PRAGMA-Befehle.

Initialisierung

let validator = DAOSchemaValidator (baseDAO)

Methoden

Methode Beschreibung

validateTable(_:) Prift Tabellen-Existenz — Bool
getUserVersion() PRAGMA user_version lesen — Int
setUserVersion(_:) PRAGMA user_version setzen

Validierungsstrategie

7. PRAGMA schema_version ausfihren (Pending Transactions committen)
8. PRAGMA table_info(tableName) — Primare Prifmethode

9. Fallback: sqlite_master Query bei negativem Ergebnis

10. Debug-Logging bei Inkonsistenzen zwischen beiden Methoden

Verwendung in DAOFactory

func validateSchema () throws -> (userVersion: Int, foldersTableExists: Bool) {

let validator = DAOSchemaValidator (_accountDAO) let userVersion = try
validator.getUserVersion () let foldersTableExists = try
validator.validateTable (MailSchema.tFolders) return (userVersion,
foldersTableExists) }

BaseDAO Bind Helpers

Interne Helper-Methoden in BaseDAO fiir sicheres Parameter-Binding mit SQLite. Alle
Methoden verwenden SQLITE_TRANSIENT fur String-Kopien.

Seite 3 | AILO DAO Utilities v1.0

AILO Handbuch | Teil 3: Data Access Layer

Methode Beschreibung
bindText(_:_:_:) String? binden (NULL bei nil)
bindint(_:_:_:) Int? binden

bindUUID(_:_:) UUID als TEXT binden
bindBlob(_:_: :) Data als BLOB binden
debugBoundValues(_:) Debug-Ausgabe aller Parameter

Technische Hinweise

SQLITE_TRANSIENT: Erzwingt Kopie von Strings (Memory Safety)

async Metrics Recording: Performance-Daten werden asynchron geschrieben
Transaktion-Semantik: BEGIN — Operation — COMMIT/ROLLBACK
PRAGMA vs sqlite_master: Beide Methoden fir zuverlassige Validierung
Epoch Timestamps: Date als Double (timelntervalSince1970) gespeichert
Variadic Columns: select() akzeptiert beliebig viele Spaltennamen

AILO Handbuch — Kapitel 3.3 DAO Utilities
Version 1.0 | Dezember 2025

Seite 4 | AILO DAO Utilities v1.0

AILO Handbuch | Teil 3: Data Access Layer

3.4 Datenmodelle

Database/Models/ « Swift-Structs fur Persistenz und Domain-Logic

Ubersicht

AILO verwendet leichtgewichtige Swift-Structs als Datenmodelle. Alle Modelle sind Sendable
fur Swift Concurrency, Codable fir JSON-Serialisierung und Equatable fir Vergleiche. Die
Modelle decken drei Hauptbereiche ab: Mail-Entitaten, Log-System und Pre-Prompt-Katalog.

Modell Beschreibung

LogEntry Text-/Audio-Log-Eintrage
AccountEntity E-Mail-Account-Konfiguration
FolderEntity IMAP-Ordner mit Attributen
MessageHeaderEntity E-Mail-Header fiir Listen
MessageBodyEntity E-Mail-Body mit Metadaten
AttachmentEntity Anhange mit Deduplizierung
OutboxItemEntity Ausgehende E-Mails Queue
AlPrePromptPreset Pre-Prompt-Inhalt
PrePromptMenultem Hierarchisches Men(-Item
PrePromptRecipe Kombinierte Prompts
Cookbook Kochbuch-Container
RecipeMenultem Rezept-Menustruktur
LogEntry

Reprasentiert einen Log-Eintrag im Tagebuch-System. Unterstutzt sowohl Text- als auch
Audio-Eintrage mit optionaler Kl-Verarbeitung.

Eigenschaften

Feld Typ Beschreibung

id uuiD Eindeutige ID

title String? Optionaler Titel

text String? Text-Inhalt

audioURL URL? Pfad zur Audio-Datei
createdAt Date Erstellungsdatum
category String? Kategorie-Zuordnung
tags [String] Tag-Liste
reminderDate Date? Erinnerungsdatum
useAT Bool? Kl-Verarbeitung aktiv
aiText String? Kl-generierter Text
Protokolle

+ Identifiable: id-Property fur SwiftUl-Listen
+ Codable: JSON-Serialisierung flr Persistenz
+ Equatable: Vergleichbarkeit fir Updates

Mail-Entitaten

Die Mail-Entitaten bilden das E-Mail-Datenmodell ab. Alle sind Sendable fir Swift
Concurrency und in MailSchema.swift definiert.

Seite 1 | AILO Datenmodelle v1.0

AILO Handbuch

AccountEntity

Feld Typ Beschreibung
id uuiD Account-ID
displayName String Anzeigename
emailAddress String E-Mail-Adresse
hostIMAP String IMAP-Server
hostSMTP String SMTP-Server
createdAt Date Erstellungsdatum
updatedAt Date Anderungsdatum

FolderEntity

accountld: UUID — Zugehdriger Account

name: String — Server-Name (z.B. "INBOX")
specialUse: String? — inbox, sent, drafts, trash, spam
delimiter: String? — Hierarchie-Trennzeichen
attributes: [String] — IMAP-Flags (\Noselect, etc.)

MessageHeaderEntity

accountld, folder, uid: Composite Key

from: String — Absender-Adresse

subject: String — Betreff

date: Date? — Nachrichtendatum

flags: [String] — \Seen, \Flagged, etc.

hasAttachments: Bool — Anhange vorhanden
signatureStatus: SignatureStatus? — S/MIME Status (v4)
signerEmail: String? — Signatur-E-Mail (v4)

MessageBodyEntity

text: String? — Plain-Text Body

html: String? — HTML Body

rawBody: String? — Roher MIME-Body (v3)
contentType, charset: MIME-Metadaten (v2)
transferEncoding: String? — quoted-printable, base64
isMultipart: Bool — Multipart-Nachricht

rawSize, processedAt: Verarbeitungs-Metadaten

AttachmentEntity

partld: String — MIME Part-ID (z.B. "1.2")
filename, mimeType: Dateiinformationen
sizeBytes: Int — GroRe in Bytes

data: Data? — Binardaten (optional)

contentld: String? — CID flr Inline-Attachments
isInline: Bool — Eingebettetes Bild

filePath: String? — Externer Dateipfad
checksum: String? — SHA256 fir Deduplizierung

OutboxItemEntity

id: UUID — Outbox-1D
accountld: UUID — Absender-Account
status: OutboxStatusEntity — pending/sending/sent/failed

Seite 2 | AILO Datenmodelle v1.0

Teil 3: Data Access Layer

AILO Handbuch | Teil 3: Data Access Layer

» attempts: Int — Versuchszahler

« from, to, cc, bcc: Adressen

* subject, textBody, htmlIBody: Inhalt

+ attachmentsJson: String? — JSON-serialisierte Anhange
Pre-Prompt-Modelle

Das Pre-Prompt-System verwendet ein hierarchisches Modell mit Kategorien, Presets und
Rezepten. Alle Modelle sind Codable fiir UserDefaults-Persistenz.

AlPrePromptPreset

Content-Modell fiir Pre-Prompt-Vorlagen. Enthalt den eigentlichen Prompt-Text.

Feld Typ Beschreibung

id uuiD Preset-ID

name String Anzeigename

text String Prompt-Inhalt

icon String Emoji (max 3 Zeichen)
keywords String Semikolon-getrennte Keywords
isDefault Bool Standard-Preset

createdAt Date Erstellungsdatum

updatedAt Date Anderungsdatum

PrePromptMenultem

Hierarchisches Menu-Item fur Katalog-Struktur. Kann Ordner oder Preset-Referenz sein.

id: UUID — Menu-ltem-ID

parentlD: UUID? — Parent-Folder (nil = Root)

name, icon: Anzeige-Properties

keywords: String — Kontext-Metadaten

sortOrder: Int — Reihenfolge

presetlD: UUID? — Referenz auf AlPrePromptPreset
isFolder: Bool (computed) — presetID == nil

Factory Methods: .folder(...), .preset(...)

PrePromptRecipe

"Kochrezept" das mehrere Katalog-Elemente zu einem Prompt kombiniert.

id, name, icon: Identifikation

keywords: String — Rezept-Metadaten

elementlIDs: [UUID] — Geordnete Menultem-IDs
separator: String — Trennzeichen (Default: "\n\n")
generatePrompt(...): Kombiniert alle Elemente
collectKeywords(...): Sammelt alle Keywords hierarchisch

Cookbook & RecipeMenultem

Kochbuch-Container und Menustruktur fir Rezepte (analog zu PrePromptMenultem).

Cookbook: id, name, icon, keywords, sortOrder
RecipeMenultem: id, cookbookID, parentlD, recipelD, name, sortOrder
Struktur: Cookbook — RecipeMenultem (Kapitel/Rezept-Referenz)

Seite 3 | AILO Datenmodelle v1.0

AILO Handbuch | Teil 3: Data Access Layer

Keyword-Format

Keywords verwenden ein einheitliches Format fiir Metadaten-Speicherung:

Format: "Schlissel: Wert; Schlissel2: Wert2"

Beispiel: "Anrede: Du; Stil: formell; Lange: kurz"

keywordPairs: Computed Property — [(key: String, value: String)]
keyword(_:): Methode zum Abrufen einzelner Werte

Technische Hinweise

Sendable: Alle Modelle sind thread-safe fir Swift Concurrency
Codable: Custom init(from:) fur Migration von alten Formaten
Equatable: Fur SwiftUl-Diff und Update-Detection

Identifiable: id-Property fur ForEach und List

Factory Methods: Convenience-Initializer fur haufige Falle
updated(): Immutable Updates mit neuem updatedAt-Timestamp
Icon-Limit: Emoji auf 3 Zeichen begrenzt (String.prefix(3))

AILO Handbuch — Kapitel 3.4 Datenmodelle
Version 1.0 | Dezember 2025

Seite 4 | AILO Datenmodelle v1.0

AILO Handbuch | Teil 3: Data Access Layer

3.5 DataStore (Logs)

Database/Store/DataStore.swift = JSON-basierte Log-Persistierung

Ubersicht

Der DataStore ist ein ObservableObject, das die Persistierung von LogEntry-Objekten
verwaltet. Er verwendet JSON-Serialisierung fur die Speicherung und bietet vollstandige
CRUD-Operationen sowie Audio-URL-Management. Die Klasse ist @MainActor fir Thread-
Sicherheit in SwiftUI.

Feature Beschreibung

ObservableObject SwiftUl-Integration mit @Published
JSON-Persistierung Automatische Speicherung in entries.json
CRUD-Operationen add(), update(), delete()
Audio-URL-Management Pfad-Verwaltung fir Audio-Dateien
@MainActor Thread-sichere Ul-Updates
Async/Await Moderne Swift Concurrency
Architektur

Der DataStore folgt dem Repository-Pattern und kapselt alle Persistierung-Logik. Er wird als
EnvironmentObject in der SwiftUl-Hierarchie geteilt.

Klassenstruktur

@MainActor final class DataStore: ObservableObject { @Published
private (set) var entries: [LogEntry] = [] @Published var
pendingImportText: String? = nil private let fileName = "entries.json"
}

Properties

Property Typ Beschreibung

entries [LogEntry] @Published, private(set) — Alle Logs
pendingImportText String? @Published — Pending Import-Text

fileName String Private Konstante: "entries.json"
CRUD-Operationen

add(_:)

Flgt einen neuen LogEntry am Anfang der Liste ein (neueste zuerst).

func add(entry: LogEntry) { entries.insert (entry, at: 0) Task {
await save() } }

update(_:)

Aktualisiert einen bestehenden Eintrag anhand seiner ID.

func update(entry: LogEntry) ({ if let idx = entries.firstIndex (where:
{ $0.id == entry.id }) { entries[idx] = entry Task { await
save () } bl

Seite 1 | AILO DataStore v1.0

AILO Handbuch | Teil 3: Data Access Layer

delete(at:)

Loéscht Eintrage an den angegebenen IndexSet-Positionen (SwiftUl-kompatibel).

func delete(at offsets: IndexSet) { for index in offsets.sorted(by: >)
{ if entries.indices.contains (index) {

entries.remove (at: index) } } Task { await save () } }
Persistierung

Die Persistierung erfolgt Uber JSON-Dateien im Documents-Verzeichnis. Laden und
Speichern sind async-Operationen.

Speicherort

* Verzeichnis: FileManager.documentDirectory
+ Dateiname: entries.json
+ Pfad: ~/Documents/entries.json

load()

Ladt alle Eintrage aus der JSON-Datei. Wird im init() automatisch aufgerufen.

func load() async { let url = storeURL() guard
FileManager.default.fileExists (atPath: url.path) else { return } let
data = try Data(contentsOf: url) let decoded = try
JSONDecoder () .decode ([LogEntry] .self, from: data) self.entries =
decoded }

save()

Speichert alle Eintrage atomar in die JSON-Datei.

func save() async { let url = storeURL () let data = try
JSONEncoder () .encode (entries) try data.write(to: url, options:
[.atomic]) }

URL-Management

Der DataStore bietet Helper-Methoden fiir Dateipfad-Verwaltung.

Methode Beschreibung

documentsURL() Gibt das Documents-Verzeichnis zuriick — URL
storeURL() Gibt den Pfad zur entries.json zuriick — URL (private)
audioURL(for:) Konstruiert Audio-Dateipfad — URL

Audio-URL-Verwendung

// Audio-Datei-Pfad fiir LogEntry let url = store.audioURL (for:
entry.audioFileName!) if FileManager.default.fileExists (atPath: url.path) {
let data = try Data(contentsOf: url) // Audio abspielen oder
verarbeiten }

LogEntry-Modell

Das LogEntry-Struct reprasentiert einen einzelnen Log-Eintrag (Text oder Audio).

Seite 2 | AILO DataStore v1.0

AILO Handbuch | Teil 3: Data Access Layer

EntryType Enum

Case Beschreibung
text Text-Log-Eintrag mit text-Property
.audio Audio-Log mit audioFileName-Property

LogEntry Properties

Feld Typ Beschreibung

id uuID Eindeutige ID (Default: UUID())
date Date Erstellungsdatum (Default: Date())
type EntryType .text oder .audio

title String? Optionaler Titel

text String? Text-Inhalt (furr .text)
audioFileName String? Dateiname (fiir .audio)
category String? Kategorie-Zuordnung

tags [String] Tag-Liste (Default: [])
reminderDate Date? Erinnerungsdatum

useAl Bool? Kl-Verarbeitung aktiviert
aiText String? Kl-generierter Text

Factory Methods

* LogEntry.text(:title:category:tags:reminderDate:useAl:aiText:)

. LogEntry.audio (fileName:title:category:tags:reminderDate:)

SwiftUl-Integration

Der DataStore wird als EnvironmentObject in der App-Hierarchie geteilt.

App-Setup

@main struct AILO APPApp: App { @StateObject private var store =
DataStore () var body: some Scene { WindowGroup {
ContentView () .environmentObject (store) } }o}

View-Verwendung

struct LogsListView: View ({ @EnvironmentObject private var store:
DataStore var body: some View ({ List {

ForEach (store.entries) { entry in LogRowView (entry: entry)
} .onDelete (perform: store.delete) } } ol

Technische Hinweise

* @MainActor: Garantiert Ul-Updates auf Main Thread

+ private(set): entries nur intern mutierbar

+ .atomic Option: Verhindert korrupte Dateien bei Absturz
+ Sortierung: Neueste Eintrage zuerst (insert at: 0)

* IndexSet Handling: sorted(by: >) fiir sichere L6schung
* Async Init: load() wird im Task {} gestartet

+ Error Handling: Silent fail (optional: Logging)

* Audio-Dateien: Separat im Documents-Verzeichnis

Seite 3 | AILO DataStore v1.0

AILO Handbuch | Teil 3: Data Access Layer

AILO Handbuch — Kapitel 3.5 DataStore (Logs)
Version 1.0 | Dezember 2025

Seite 4 | AILO DataStore v1.0

AILO Handbuch | Teil 4: Helpers & Parser

4.1 IMAP/MIME Parser

Services/Mail/IMAP/ « Helpers/Parsers/ < E-Mail-Protokoll & Encoding-Verarbeitung

Ubersicht

Das Parser-Modul verarbeitet IMAP-Protokollnachrichten und MIME-kodierte Inhalte. Es
dekodiert ENVELOPE, FLAGS, BODYSTRUCTURE und LIST-Responses sowie RFC2047-
kodierte Header (Subject, From). Das System unterstitzt multiple Charsets (UTF-8, ISO-
8859-1, Windows-1252) und Transfer-Encodings (Base64, Quoted-Printable).
Komponente Beschreibung

IMAPParsers ENVELOPE, FLAGS, LIST, BODYSTRUCTURE Parsing
RFC2047EncodedWordsParser Encoded-Word Dekodierung (=?charset?B/Q?...7=)
MIMEParser Multipart-Parsing, Boundary-Handling
TransferEncodingDecoder Base64, Quoted-Printable Dekodierung

ContentDecoder Charset-Konvertierung, Text/Enriched
AttachmentExtractor Attachment-Extraktion aus MIME
IMAPParsers

Zentrale Klasse fir das Parsing von IMAP-Server-Responses. Verarbeitet FETCH-
Antworten und extrahiert strukturierte Daten.

Datentypen

Struct Felder
EnvelopeRecord uid, subject, from, internalDate
FlagsRecord uid, flags: [String]

Folderinfo name, delimiter, attributes: [String]

MessageEnvelope subject, from, to, cc, bcc, date, messageld

FetchResult uid, flags, internalDate, envelope, bodySection, bodyStructure
BodyStructure enum: .single(Partinfo) | .multipart(type, subType, parts)
Parse-Methoden

Methode Beschreibung

parseEnvelope(_:)
parseFlags(_:)
parseUIDs(_:)
parselnternalDate(_:)
parseBodySection(_:)
parseFetchResponse(_:)
parseEnvelope(_:) single
parseBodyStructure(_:)
parseListResponse(_:)

[String] — [EnvelopeRecord]

[String] — [FlagsRecord]

String — [String] (SEARCH Response)
String — Date?

[String] — String? (Body-Inhalt)

Data — FetchResult (throws)

String — MessageEnvelope (throws)
String — BodyStructure (throws)
String — FolderInfo (throws)

BodyStructure Enum

public enum BodyStructure: Sendable, Equatable { case single (PartInfo)
case multipart (type: String, subType: String, parts: [BodyStructure]) }

IMAPBodyStructure Enum

Seite 1 | AILO IMAP/MIME Parser v1.0

AILO Handbuch | Teil 4: Helpers & Parser

+ .text(subtype:charset:) — text/plain, text/html

+ .multipart(subtype:parts:) — multipart/mixed, alternative
+ .application(subtype:) — application/pdf, octet-stream

+ .imagel/.audio/.video(subtype:) — Medientypen

* .message(subtype:) — message/rfc822

RFC2047EncodedWordsParser

Dekodiert RFC2047 Encoded-Words in E-Mail-Headern. Format:
=?charset?encoding?data?= wobei encoding B (Base64) oder Q (Quoted-Printable) ist.

API

Methode Beschreibung

decode(_:) Allgemeine Dekodierung — String
decodeSubject(_:) Subject-Header dekodieren — String
decodeFrom(_:) From-Header dekodieren — String
containsEncodedWord(_:) Prift auf Encoded-Word — Bool
encode(_:charset:encoding:) Text zu Encoded-Word kodieren

EncodingType Enum

+ .base64 ("B"): Standard Base64-Kodierung
+ .quotedPrintable ("Q"): Q-Encoding mit =XX Escape-Sequenzen

Beispiele
// Base64 "=2UTF-8?B?Q2FmwbkgaW4gTcO8bmNoZW4=?=" - "Café in Minchen" // Quoted-

Printable "=?IS0-8859-1?Q?Caf=E9 in M=FCnchen?=" - "Café in Minchen" // UTF-8 Q-
Encoding (Multi-Byte) "=?UTF-8?Q?=C3=BC=C3=A4=C3=B6=C3=9F?=" - "1aoRk"

TransferEncodingDecoder

Dekodiert Content-Transfer-Encoding fur E-Mail-Bodies. Unterstutzt Base64, Quoted-
Printable, 7bit, 8bit und Binary.

Hauptmethode
static func decode (_ content: String, encoding: String?,
charset: String?) -> String

Unterstutzte Encodings

Encoding Verarbeitung

base64 Standard Base64 — Data — String mit Charset
quoted-printable =XX Escape-Sequenzen, Soft Line Breaks (=)
7bit / 8bit Passthrough (ASCII / Extended ASCII)

binary Raw-Daten ohne Transformation

Charset-Handling

+ UTF-8: .utf8 (Default)

* 1S0O-8859-1: .isolLatin1

* Windows-1252: .windowsCP1252
» US-ASCII: .ascii

Seite 2 | AILO IMAP/MIME Parser v1.0

AILO Handbuch | Teil 4: Helpers & Parser

MIMEParser

Verarbeitet Multipart-MIME-Nachrichten und extrahiert einzelne Parts anhand von
Boundaries.

Kernfunktionen

parse(_:): Hauptparser — [MIMEPart]
extractContentType(_:): Content-Type Header parsen
extractFilename(_:): Dateiname aus Content-Disposition
decodeQuotedPrintable(_:): QP-Dekodierung mit Charset
decodeRFC5987(_:): Extended Parameter (filename*=)

Multipart-Verarbeitung

1. Boundary aus Content-Type extrahieren

2. Content an Boundary-Markern splitten

3. Jeden Part rekursiv parsen (nested Multipart)
4. Transfer-Encoding pro Part anwenden

AttachmentExtractor

Extrahiert Attachments aus MIME-Parts mit Unterstlitzung fir verschiedene Filename-
Encodings.

Filename-Pattern-Prioritat

filename*=utf-8''... (RFC 5987)
filename="..." (Quoted)
filename=... (Unquoted)
name="..." (Fallback)

name=. .. (Letzter Fallback)

© XN O

ExtractedAttachment Struct

+ filename: String — Dekodierter Dateiname

+ mimeType: String — Content-Type

+ data: Data — Binardaten

+ contentld: String? — CID flr Inline-Attachments
ContentDecoder
Hochlevel-Decoder fur E-Mail-Content mit automatischer Encoding-Erkennung.
Methode Beschreibung
decodeContent(_:encoding:charset:) Vollstandige Dekodierung
decodeTextEnriched(_:toHTML:) Text/Enriched zu HTML/Plain
isTextEnriched(_:) Prift auf Text/Enriched
detectOriginalEncoding(_:) Erkennt Charset aus Content
decodeBase64(_:) Base64 — String
normalizeCharset(_:) Charset-ID normalisieren
RFC2047Test

Seite 3 | AILO IMAP/MIME Parser v1.0

AILO Handbuch | Teil 4: Helpers & Parser

Test-Klasse zur Validierung der RFC2047-Dekodierung mit verschiedenen Encoding-
Szenarien.

Testfalle

Q-Encoding mit UTF-8 Multi-Byte-Sequenzen (=C3=BC — ()
Q-Encoding mit ISO-8859-1 (=E9 — &, =FC — ()
Base64-Encoding mit UTF-8

Multiple Encoded-Words in einem Header

Mixed Content (Encoded + Plain Text)

Technische Hinweise

UTF-8 Multi-Byte: Bytes werden gesammelt, dann dekodiert
Fallback-Kette: UTF-8 — ISO-8859-1 — Original

Soft Line Break: "=\n" in QP wird entfernt

Underscore in Q: " " wird zu Leerzeichen konvertiert
Case-Insensitive: B/b und Q/q sind aquivalent

Sendable: Alle Structs sind thread-safe

AILO Handbuch — Kapitel 4.1 IMAP/MIME Parser
Version 1.0 | Dezember 2025

Seite 4 | AILO IMAP/MIME Parser v1.0

AILO Handbuch | Teil 4: Helpers & Parser

4.2 Utilities

Helpers/Utilities/ + Hilfsklassen fur Transport, Resilienz & Ul

Ubersicht

Das Utilities-Modul enthalt wiederverwendbare Hilfsklassen fir verschiedene Bereiche: Mail-
Transport-Abstraktion, Task-Abbruchsteuerung, Resilienz-Pattern (Circuit Breaker, Retry),
Markdown-Rendering und Pre-Prompt-Katalog-Verwaltung.

Komponente Beschreibung
MailTransportStubs IMAP/SMTP Transport-Abstraktion
CancellationToken Thread-sicherer Task-Abbruch
CircuitBreaker Circuit Breaker Pattern
RetryPolicy Exponential Backoff mit Jitter
MarkdownHelper Markdown-Formatierung
PrePromptCatalogManager Hierarchische Katalog-Verwaltung
PrePromptPicker Auswahl-Ul fiir Pre-Prompts
MailTransportStubs

Transport-Abstraktion fur IMAP/SMTP-Operationen. Kapselt Verbindungsmanagement,
Header-Fetching und Message-Retrieval mit integriertem Caching.

MailSendReceive Klasse

Hauptklasse fiir Mail-Transport-Operationen mit Repository-Integration.

Methode Beschreibung
fetchHeaders(limit:folder:using:...) Header-Liste mit Cache-Support
fetchMessageUID(_:folder:using:) Einzelne Nachricht abrufen
fetchMessageOptimized(...) BODYSTRUCTURE-basiertes Fetching
clearCache(for:folder:) Cache leeren

FETCH-Response-Rekonstruktion

* Multi-Line FETCH Responses werden rekonstruiert

+ Literal-Marker {n} werden aus Responses entfernt

* IMAPParsers.parseEnvelope() fur strukturierte Daten
* Flags-Mapping (\Seen — unread: false)

Header-Erkennung

Erkannte Prefixe: From:, To:, Cc:, Subject:, Date:, Message-ID:, Content-Type:, MIME-
Version:, X-*, DKIM-Signature:, ARC-*, Authentication-Results:, etc.

CancellationToken

Thread-sicheres Token fir kooperative Task-Abbruchsteuerung. Verwendet DispatchQueue
fur synchronisierten Zugriff auf den cancelled-State.

Implementation

Seite 1 | AILO Utilities v1.0

AILO Handbuch | Teil 4: Helpers & Parser

public final class CancellationToken: @unchecked Sendable { private let
g = DispatchQueue (label: "cancellation.token.state") private var
cancelled = false public func cancel() { g.sync { cancelled = true
bl public var isCancelled: Bool { g.sync { cancelled } } }
Verwendung

let token = CancellationToken() // In async Task: while !token.isCancelled
{ // ... work ... } // Bbbruch von auBen: token.cancel ()
CircuitBreaker

Implementiert das Circuit Breaker Pattern mit drei Zustanden: Closed, Open und HalfOpen.
Verhindert Uberlastung fehlschlagender Services durch temporares Blockieren von
Anfragen.

State Enum

State Beschreibung

.closed(Int) Normal — Zahlt consecutive Failures
.open(until: Date) Blockiert — Bis Cooldown-Ende

.halfOpen(remainingProbes: Int) Test-Phase — Erlaubt Probe-Requests

Konfiguration

+ openAfterFailures: Int = 3 — Schwelle zum Offnen

* baseOpenDuration: Timelnterval = 10s — Basis-Cooldown

* maxOpenMultiplier: Int = 5 — Max Cooldown-Multiplikator

+ halfOpenProbes: Int = 3 — Erfolgreiche Probes zum SchlieRen

record(_:) Methode

Verarbeitet Result<Void, Error> und transitioniert den State. Gibt optionalen Delay zurtick
(Sekunden bis zum nachsten Versuch).

RetryPolicy

Kapselt Exponential Backoff und Circuit Breaker Logik fir transiente Netzwerkfehler.
Singleton-basiert mit Thread-sicherer Konfiguration.

ErrorKind Enum

Kind Klasse Beschreibung

.dns transient DNS-Auflésungsfehler
.timeout transient Verbindungs-Timeout
.refused transient Connection Refused
.unreachable transient Host nicht erreichbar
.io transient I/O-Fehler

.auth permanent Authentifizierungsfehler
.protocolErr permanent Protokollfehler
.parseErr permanent Parse-Fehler

BackoffProfile Struct

+ base: Timelnterval — Initial Delay

Seite 2 | AILO Utilities v1.0

AILO Handbuch | Teil 4: Helpers & Parser

+ factor: Double = 2.0 — Exponentieller Faktor
* max: Timelnterval — Maximum Delay Cap
+ jitter: Double = 0.2 — Zufallsabweichung (0.0-1.0)

API
Methode Beschreibung
nextDelay(for:attempt:key:) Berechnet nachsten Delay mit Jitter
recordFailure(_:kind:) Registriert Fehler, 6ffnet ggf. Circuit
recordSuccess(_:) SchlieRt Circuit, reset Counters
isOpen(_:) Prift ob Circuit offen ist
shouldRetry(kind:attempt:key:) Prift ob Retry erlaubt ist
remainingRetries(kind:attempt:) Verbleibende Retry-Versuche
MarkdownHelper

Einfache Hilfsfunktionen fir Markdown-Textformatierung im Editor.

Methode Beschreibung
insertAtLineStart(_:in:) Flgt Prafix (# , -) am Zeilenanfang ein
wrapSelectionBold(_:) Umschlie3t mit **text**
wrapSelectionltalic(_:) Umschlie3t mit *text*

PrePromptCatalogManager

Singleton flr die Verwaltung des hierarchischen Pre-Prompt-Katalogs. Speichert Menu-
Items, Presets, Recipes und Cookbooks in UserDefaults.

@Published Properties

menultems: [PrePromptMenultem] — Hierarchische Struktur
presets: [AIPrePromptPreset] — Prompt-Inhalte

recipes: [PrePromptRecipe] — Kombinierte Prompts
cookbooks: [Cookbook] — Kochbuch-Container
recipeMenultems: [RecipeMenultem] — Rezept-Menustruktur

CRUD-Operationen

addMenultem(_:), updateMenultem(_:), deleteMenultem(_:)
addPreset(_:in:), updatePreset(_:), deletePreset(_:)
addRecipe(_:), updateRecipe(_:), deleteRecipe(_:)
moveMenultem(_:to:), reorderltems(in:from:to:)

Export/Import

CatalogExport Struct: version, exportDate, menultems, presets, recipes, cookbooks,
recipeMenultems. JSON-Serialisierung mit ISO8601-Datumsformat.

PrePromptPicker

SwiftUl-View fur die hierarchische Auswahl von Pre-Prompts aus dem Katalog. Unterstltzt
Navigation durch Ordner-Hierarchie.

Seite 3 | AILO Utilities v1.0

AILO Handbuch | Teil 4: Helpers & Parser

Features

Breadcrumb-Navigation durch Ordner
Unterscheidung Ordner (Folder) vs. Preset-ltems
Selection-Callback fur gewahlten Preset
Integration mit PrePromptCatalogManager.shared

Technische Hinweise

Sendable: CancellationToken, CircuitBreaker sind thread-safe
Singleton: RetryPolicy.shared, PrePromptCatalogManager.shared
DispatchQueue: Serialisierter Zugriff auf mutable State
ObservableObject: PrePromptCatalogManager fur SwiftUl-Binding
Value Type: CircuitBreaker als Struct (copy-on-write)

Jitter: Zufallige Abweichung verhindert Thundering Herd

AILO Handbuch — Kapitel 4.2 Utilities
Version 1.0 | Dezember 2025

Seite 4 | AILO Utilities v1.0

AILO Handbuch | Teil 5: Konfiguration

5.1 Settings Keys

Configuration/Settings/SettingsKeys.swift « Zentrale UserDefaults-Konstanten

Ubersicht

Die SettingsKeys.swift definiert alle UserDefaults-Schlissel als zentrale Konstanten. Dies
ermdglicht konsistente Verwendung in der gesamten App und verhindert Tippfehler in Key-
Strings. Die Keys folgen einem hierarchischen Namensschema: config.bereich.unterbereich

Kategorie Anzahl Keys Prafix

Kl-Server/Modelle 5 config.ai.server.*
Pre-Prompt System 6 config.ai.preprompt.*
Kategorien 1 config.categories
Mikrofon/Aufnahme 4 config.mic.*

Sprache 1 config.speech.*
Kl-Server/Modelle

Konfiguration fiir KI-Provider wie OpenAl und Ollama.

Konstante UserDefaults Key Typ / Beschreibung
kAIServerAddress config.ai.server.address String — Server-URL
kAIServerPort config.ai.server.port String — Port (|eer=443)
kAIAPIKey config.ai.server.apikey String — API-Schlissel
kAIModel config.ai.server.model String — Modellname
kAIPrePrompt config.ai.preprompt String — Legacy Pre-Prompt
Verwendung

// Lesen let addr = UserDefaults.standard.string(forKey: kAIServerAddress)
?? "" let port = UserDefaults.standard.string(forKey: kAIServerPort) ?7?
"443" let model = UserDefaults.standard.string(forKey: kAIModel) ?27?
"llama3:8b" // Schreiben

UserDefaults.standard.set ("https://api.openai.com", forKey:
kAIServerAddress)

Pre-Prompt System

Keys flr das hierarchische Pre-Prompt-Katalog-System mit MenuUstruktur, Presets,
Rezepten und Kochbtichern.

Konstante UserDefaults Key Datentyp
kAIPresetsKey config.ai.preprompts JSON [AlPrePromptPreset]
kAISelectedPresetKey config.ai.preprompt.selected String (UUID)
kPrePromptMenuKey config.ai.preprompt.menu JSON [PrePromptMenultem]
kPrePromptRecipesKey config.ai.preprompt.recipes JSON [PrePromptRecipe]
kCookbooksKey config.ai.preprompt.cookbooks JSON [Cookbook]
kRecipeMenuKey config.ai.preprompt.recipemenu JSON [RecipeMenu|tem]
kCatalogInitializedKey config.ai.preprompt.initialized Bool

JSON-Persistierung

// Laden guard let data = UserDefaults.standard.data(forKey:
kAIPresetsKey), let items = try?

Seite 1 | AILO Settings Keys v1.0

AILO Handbuch | Teil 5: Konfiguration

JSONDecoder () .decode ([AIPrePromptPreset] .self, from: data) else { return }
// Speichern guard let data = try? JSONEncoder () .encode (presets) else {
return } UserDefaults.standard.set (data, forKey: kAIPresetsKey)

Kategorien

Benutzerdefinierte Kategorien fir Log-Eintrage.

Konstante UserDefaults Key Datentyp
kCategories config.categories JSON [String]
Standard-Kategorien

+ Allgemein
« Netzwerk
 Dokumentation

Mikrofon/Aufnahme

Einstellungen fir Audio-Aufnahme und Spracherkennung.

Konstante UserDefaults Key Typ / Wertebereich
kMicSensitivity config.mic.sensitivity Double 0.0-1.0
kSilenceThreshold config.mic.silenceDB Double -60 — 0 dB
kChunkSeconds config.mic.chunkSeconds Double 1 — 10 Sekunden
kSpeechLang config.speech.lang String (z.B. "de-DE")
Standardwerte

+ Empfindlichkeit: 0.85 (85%)

+ Stille-Schwelle: -40 dB

+ Segmentlange: 2.0 Sekunden

» Sprache: Locale.current (z.B. de-DE)

Verfuiigbare Sprachen

Code Bezeichnung

de-DE Deutsch (Deutschland)
de-AT Deutsch (Osterreich)
de-CH Deutsch (Schweiz)
en-US English (US)

en-GB English (UK)

ConfigView Integration

Die ConfigView.swift verwendet lokale Konstanten, die auf SettingsKeys referenzieren.

Lokale Key-Enum

private enum K { static let categories = "config.categories"
static let micSensitivity = "config.mic.sensitivity" static let
silenceThresholdDB = "config.mic.silenceDB" static let chunkSeconds
= "config.mic.chunkSeconds" static let speechlang =
"config.speech.lang" static let mailSettingsName =
"config.mail.settingsName" }

Seite 2 | AILO Settings Keys v1.0

AILO Handbuch | Teil 5: Konfiguration

NaN-Schutz bei Double-Werten

// Laden mit Validierung let raw = ud.object (forKey: K.micSensitivity) as?
Double ?? 0.85 micSensitivity = raw.isNaN || raw.isInfinite ? 0.85 : raw
// Speichern mit Validierung let valid = value.isNaN || value.isInfinite ?
0.85 : value ud.set(valid, forKey: K.micSensitivity)

Namenskonventionen

» Préfix config.: Alle App-Einstellungen

« Bereich.Unterbereich: Hierarchische Struktur

+ Konstante k...: Global let mit k-Prafix

» CamelCase: Konstanten-Namen in Swift

* Lowercase + Dots: Key-Strings in UserDefaults

Technische Hinweise

* UserDefaults: Automatische Synchronisation

+ JSON-Codable: Arrays/Structs als Data speichern

* Typ-Sicherheit: Konstanten verhindern Tippfehler

+ Migration: kCataloglnitializedKey fur einmalige Setup-Logik
» Fallback: Immer Standardwerte bei nil/NaN

* Locale: Sprach-Codes mit Bindestrich (de-DE, nicht de_DE)

AILO Handbuch — Kapitel 5.1 Settings Keys
Version 1.0 | Dezember 2025

Seite 3 | AILO Settings Keys v1.0

AILO Handbuch | Teil 5: Konfiguration

5.2 Lokalisierung

Configuration/Language/ * Deutsch/Englisch Ubersetzungen

Ubersicht

AILO verwendet das iOS/macOS Lokalisierungssystem mit Localizable.strings Dateien. Die
App unterstitzt Deutsch (de) als Hauptsprache und Englisch (en) als Fallback. Alle Ul-Texte
sind externalisiert und folgen einem konsistenten Key-Namensschema.

Datei Sprache Anzahl Strings
de.lproj/Localizable.strings Deutsch = ~500
en.lproj/Localizable.strings English 58 ~500
Key-Namensschema

Alle Lokalisierungs-Keys folgen einem hierarchischen Muster fiir konsistente Benennung
und einfache Zuordnung zu Views.

Pattern

<feature>.<view>.<element>[.<state|action|hint>]

Komponenten

Teil Beschreibung Beispiele

feature Feature-Bereich logs, mail, config, write, speak
view View/Screen-Name list, detail, editor, picker
element UI-Element title, field, button, label

state Zustandsmodifikator empty, loading, error, success
action Aktionsmodifikator save, delete, cancel, retry
hint Hilfetext/Tooltip placeholder, a11y, hint
Feature-Kategorien

Die Strings sind nach Features gruppiert mit MARK-Kommentaren in den Dateien.
Prafix Feature Dateien

common. * Globale Ul-Texte Alle Views

app. * App-Shell/Navigation ContentView, Tabs
dashboard. * Dashboard DashboardView

logs.* Log-Liste LogsView, LogsListView
logDetail.* Log-Details TextLogDetailView
write.* Schreiben SchreibenView

speak.* Sprechen/Audio SprechenView

mail.* E-Mail (Legacy) MailComposer
app.mail.* E-Mail (Neu) MailView, MessageDetailView
config.* Einstellungen ConfigView
aiManager.* Kl-Provider AlManagerView, AlEditor
aiEditor.* KI-Editor AlEditor

preprompts. * Pre-Prompts PrePromptManager
catalog.* Pre-Prompt-Katalog PrePromptCatalogView
categories.* Kategorien CategoriesView

Seite 1 | AILO Lokalisierung v1.0

AILO Handbuch | Teil 5: Konfiguration

Prafix Feature Dateien
store.* Datenspeicher DataStore
state.* / msg.* Zustande/Meldungen Global

Common Keys

Haufig verwendete globale Ubersetzungen unter dem common.*-Préfix.

Key Deutsch English
common . ok OK OK
common.cancel Abbrechen Cancel
common.save Sichern Save
common . edit Bearbeiten Edit
common.done Fertig Done
common.delete Loschen Delete
common.close SchlielRen Close
common.back Zurlck Back
common.yes Ja Yes
common .no Nein No
common.error Fehler Error
common.success Erfolg Success
common . loading Laden... Loading. ..
common.search Suchen Search
common.retry Erneut versuchen Retry

Beispiel-Strings

Feature: Logs

// Deutsch "logs.list.title" = "Alle Logs"; "logs.search.placeholder" = "Logs
durchsuchen"; "logs.empty" = "Noch keine Eintrage"; "logs.action.new" = "Log
hinzufiigen"; // English "logs.list.title"™ = "All Logs"; "logs.search.placeholder"
= "Search logs"; "logs.empty" = "No entries yet"; "logs.action.new" = "Add log";
Feature: Mail

// Deutsch "app.mail.action.reply" = "Antworten"; "app.mail.action.forward" =
"Weiterleiten"; "app.mail.folder.inbox" = "Posteingang"; "app.mail.folder.sent" =
"Gesendet"; // English "app.mail.action.reply" = "Reply";
"app.mail.action.forward" = "Forward"; "app.mail.folder.inbox" = "Inbox";
"app.mail.folder.sent" = "Sent";

Verwendung im Code

SwiftUl String(localized:)

// Einfacher Text Text (String(localized: "logs.list.title™)) // Mit
Variablen Text (String(localized: "catalog.recipe.elements \ (count)")) //
In Attributen .navigationTitle(String(localized: "config.nav.title"))

String Interpolation

// Key mit %@ Platzhalter "speak.entry.titleWithName" = "Transkript: %Q@";
// Verwendung String(format: NSLocalizedString ("speak.entry.titleWithName",
comment: ""), name)

Seite 2 | AILO Lokalisierung v1.0

AILO Handbuch | Teil 5: Konfiguration

Dateistruktur

Configuration/ L— Language/ |— de.lproj/ | L
Localizable.strings // Deutsch (Hauptsprache) L— en.lproj/
L Localizable.strings // English (Fallback)

Guidelines

Volistandige Satze: Keine Konkatenation von Textfragmenten
MARK-Kommentare: Feature-Gruppierung mit // MARK: -
Datei-Referenz: Kommentar mit zugehdrigen Swift-Dateien
Konsistente Keys: Gleiches Pattern in allen Sprachen
Plural-Handling: Spater via String Catalog (.xcstrings)
Accessibility: a11y-Suffix fur VoiceOver-Texte

Technische Hinweise

Bundle: Strings werden automatisch aus Bundle.main geladen
Fallback: English als Base Localization bei fehlendem Key
Encoding: UTF-8 mit \n fir Zeilenumbriche

Escape: Anflihrungszeichen als \" escapen

Semikolon: Jede Zeile endet mit ;

Kommentare: /* */ oder // fir Dokumentation
Format-Specifier: %@, %d, %lld, %.1f fir Variablen

AILO Handbuch — Kapitel 5.2 Lokalisierung
Version 1.0 | Dezember 2025

Seite 3 | AILO Lokalisierung v1.0

AILO Handbuch | Teil 5: Konfiguration

5.3 Mail Account Configuration

Database/Models/MailModels.swift < E-Mail-Konto-Konfiguration

Ubersicht

Die MailAccountConfig-Struktur definiert alle Parameter fur E-Mail-Konten: IMAP/POP3-
Empfang, SMTP-Versand, Authentifizierung, Sync-Limits, Ordnerzuordnung und S/MIME-
Signierung. Die Konfiguration wird als JSON in UserDefaults persistiert.

Bereich
Account-Basis
IMAP/POP3
SMTP

Authentifizierung

Sync Limits
Special Folders
S/IMIME
Verhalten

Beschreibung

ID, Name, E-Mail-Adresse, Anzeigename, Reply-To
Host, Port, Verschlisselung, Benutzername, Passwort
Host, Port, Verschlisselung, Benutzername, Passwort
Password, OAuth2, App-Password

Initial, Refresh, Incremental

Inbox, Sent, Drafts, Trash, Spam

Signierung aktiviert, Zertifikat-1D

Auto-Mark-Read, Intervall, Timeout, Logging

MailAccountConfig Struct

Codable, Identifiable, Equatable, Sendable Struct fur vollstdndige Account-Konfiguration.

Account-Basis

Property

id
accountName
displayName
emailAddress
replyTo

IMAP/POP3 Empfang

Property

recvProtocol
recvHost
recvPbort
recvEncryption
recvUsername
recvPassword

SMTP Versand

Property
smtpHost

smtpPort
smtpEncryption
smtpUsername
smtpPassword

Enums

Typ

UUID
String
String?
String
String?

Typ

MailProtocol
String

Int
MailEncryption
String

String?

Typ

String

Int
MailEncryption
String

String?

Beschreibung

Eindeutige Account-ID
Anzeigename im Account-Picker
Absendername in E-Mails
E-Mail-Adresse

Optionale Reply-To Adresse

Beschreibung

.imap oder .pop3

IMAP/POP3 Server

Port (993=IMAPS, 143=IMAP)
.none, .ssITLS, .startTLS
Benutzername

Passwort

Beschreibung

SMTP Server

Port (587=STARTTLS, 465=SSL)
.none, .ssITLS, .startTLS

SMTP Benutzername

SMTP Passwort

Seite 1 | AILO Mail Account Config v1.0

AILO Handbuch | Teil 5: Konfiguration

MailProtocol
* .imap — Internet Message Access Protocol
* .pop3 — Post Office Protocol v3
MailEncryption

* .none — Keine Verschlisselung (nicht empfohlen)
* .sslTLS — Direktes SSL/TLS (Port 993/465)
*+ .startTLS — STARTTLS Upgrade (Port 143/587)

MailAuthMethod

* .password — Standard Passwort-Authentifizierung

* .oauth2 — OAuth2 Token-basiert

* .appPassword — App-spezifisches Passwort (Gmail, etc.)
Sync Limits

Konfigurierbare Limits fur die E-Mail-Synchronisation zur Performance-Optimierung.

Property Typ Default Beschreibung
syncLimitInitial Int 200 Erster Sync
syncLimitRefresh Int 500 Vollstéandiger Sync
syncLimitIncremental Int 50 Inkrementeller Sync

Special Folders

Die Folders-Struktur definiert Server-Ordnernamen fiir Spezialordner. Automatische
Erkennung via FolderDiscoveryService.

Property Default Gmail-Beispiel
inbox " INBOX" INBOX

sent "Sent" [Gmail]/Sent Mail
drafts "Drafts" [Gmail]/Drafts
trash "Trash" [Gmail]/Trash
spam "Spam" [Gmail]l/Spam

FolderDiscoveryService

* Automatische Erkennung via IMAP LIST + SPECIAL-USE Extension
+ Fallback auf Name-Heuristik bei fehlender Server-Unterstitzung

» Vorkonfigurierte Provider: Gmail, Outlook, Yahoo

* 60-Sekunden Debounce fir wiederholte Discovery

S/MIME Signierung

Optionale E-Mail-Signierung mit S/IMIME-Zertifikaten aus dem iOS Keychain.
Property Typ Beschreibung

signingEnabled Bool Signierung aktiviert (Default: false)
signingCertificateld String? Keychain-Referenz zum Zertifikat
P12-Import

Seite 2 | AILO Mail Account Config v1.0

AILO Handbuch | Teil 5: Konfiguration

» Import via File-Picker (.p12, .pfx)
* Passwort-geschutzter Import
+ Speicherung in iOS Keychain mit SecltemAdd

Verhaltenseinstellungen

Property Default Beschreibung

autoMarkAsRead true Beim Offnen als gelesen markieren
checkIntervalEnabled false Automatische Priifung aktiviert
checkIntervalMin nil (15) Prifintervall in Minuten
connectionTimeoutSec 15 Verbindungs-Timeout (5-120s)
enableLogging false Verbindungsprotokoll aktivieren
oauthToken nil OAuth2-Token fir OAuth-Auth
Persistierung

Accounts werden als JSON-Array in UserDefaults gespeichert.

Speicherung

// Key "mail.accounts" // UserDefaults Key // Laden guard let data =
UserDefaults.standard.data (forKey: "mail.accounts"), let accounts =
try? JSONDecoder () .decode ([MailAccountConfig].self, from: data) else {
return } // Speichern let data = try JSONEncoder () .encode (accounts)
UserDefaults.standard.set (data, forKey: "mail.accounts")

MailEditor View

SwiftUl-View fur Account-Bearbeitung mit Validierung und Verbindungstest.

Sections

* Account: Name, E-Mail, Display Name

* Incoming: Protokoll, Host, Port, Verschlisselung, Credentials
* Outgoing: SMTP Host, Port, Verschlisselung, Credentials

* Synchronization: Sync Limits (Initial, Refresh, Incremental)

* Folders: Special Folders mit Auto-Discovery

* Advanced: Auth, Timeout, Logging, Auto-Mark-Read

* S/MIME: Signierung, Zertifikat-Auswahl, P12-Import

Technische Hinweise

+ Codable: JSON-Serialisierung fur UserDefaults

+ Sendable: Thread-sicher fir async/await

+ Validierung: Timeout 5-120s, Interval 1-120min

* Port-Defaults: 993 (IMAPS), 143 (IMAP), 587 (SMTP+STARTTLS), 465 (SMTPS)
+ DAO-Sync: Special Folders werden in MailReadDAO persistiert

* Fallback: SMTP-Credentials auf IMAP-Credentials wenn leer

AILO Handbuch — Kapitel 5.3 Mail Account Configuration
Version 1.0 | Dezember 2025

Seite 3 | AILO Mail Account Config v1.0

AILO Handbuch | Teil 6: Technologie-Stack

Teil 6: Technologie-Stack

X Plattform, Frameworks & Dependencies

Ubersicht

AILO ist eine native iOS/macOS-App, entwickelt in Swift 5.9+ mit SwiftUl. Die Architektur
kombiniert moderne Apple-Frameworks mit Custom-Implementierungen fir IMAP/SMTP-
Kommunikation und verwendet SQLite fir die lokale Datenpersistenz.

B Plattform

Komponente

iOS Deployment Target
macOS Deployment Target
Swift Version

Xcode Version
Architecture

App Store

@ Ul Framework

Framework

SwiftUl

Combine
NavigationStack
@Observable
@StateObject
@EnvironmentObject

SwiftUl Patterns

Version / Details

iOS 16.0+

macOS 13.0+ (Catalyst)

Swift 5.9+

Xcode 15.0+

arm64 (Apple Silicon), x86_64 (Intel)
iOS App Store Ready

Verwendung

100% der Ul (kein UlIKit)

Reactive Programming, Publisher/Subscriber
Navigation (iOS 16+)

iOS 17+ Observation (optional)

View Model Lifecycle

App-weites State Sharing

+ MVVM: ViewModels als @StateObject/@ObservedObject

* Repository Pattern: MailRepository als zentrale Datenschicht

* Factory Pattern: DAOFactory fur DAO-Instanziierung

+ Singleton: Shared Manager (PrePromptCatalogManager, RetryPolicy)

™ Datenbank

Technologie
SQLite3

DAO Pattern
JSON (Codable)
UserDefaults
Keychain

Verwendung

Mail-Datenbank (direkte C-API)

Data Access Obijects fiir alle DB-Operationen
Logs, Pre-Prompts, Recipes, Cookbooks
App-Settings, Account-Konfiguration
Sensible Daten (Passworter, API-Keys)

Seite 1 | AILO Technologie-Stack v1.0

AILO Handbuch | Teil 6: Technologie-Stack

SQLite Schema

* accounts — E-Mail-Account-Referenzen

* folders — Ordner-Metadaten

* msg_header — E-Mail-Header (From, Subject, Date, Flags)

* msg_body — E-Mail-Body (HTML, Text)

* attachments — Anhange-Metadaten

* outbox — Ausgehende E-Mails Queue

* blob meta, mime parts, render cache — Blob Storage

& Audio & Speech

Framework Verwendung

AVFoundation Audio-Aufnahme und -Wiedergabe
AVAudioRecorder Mikrofon-Recording (.m4a Format)
AVAudioSession Audio Session Management
AVAudioPlayer Audio-Playback

Speech Framework Live-Spracherkennung
SFSpeechRecognizer On-Device Recognition (de-DE, en-US)

Audio Features

* Chunk-basierte Transkription fir Live-Feedback
+ Silence Detection (konfigurierbare Stille-Schwelle)
* On-Device Recognition (datenschutzfreundlich)
* M4A-Format fir kompakte Speicherung
“ Netzwerk
Protokoll/Framework Verwendung
URLSession HTTP/HTTPS fir KI-APIs
IMAP (Custom) E-Mail-Empfang (IMAPConnection, IMAPCommands)
SMTP (Custom) E-Mail-Versand (SMTPClient, NIOSMTPClient)
SwiftNIO Async Networking (SMTP)
NIOSSL TLS/SSL fir SMTP-Verbindungen
Network.framework TCP/TLS fur IMAP

IMAP Implementation

IMAPConnection.swift: Verbindungsmanagement

IMAPCommands.swift: LOGIN, SELECT, FETCH, SEARCH, LIST, STORE
IMAPParsers.swift: ENVELOPE, BODYSTRUCTURE, FLAGS Parsing
IMAPConnectionPool.swift: Connection Pooling

SMTP Implementation

SMTPClient.swift: Network.framework-basiert
NIOSMTPClient.swift: SwiftNIO mit NIOSSL
STARTTLS: In-Place TLS Upgrade

AUTH LOGIN: Base64-kodierte Authentifizierung

Seite 2 | AILO Technologie-Stack v1.0

@ Kl-Integration

AILO Handbuch | Teil 6: Technologie-Stack

Provider Endpoint

OpenAl /v1/chat/completions (GPT-4, GPT-3.5)
Ollama /api/chat, /api/generate (llama3, mistral, etc.)
Custom OpenAl-kompatible APl Endpoints

AlClient Features

* Multi-Provider Support mit automatischem Fallback

* Pre-Prompt-System mit hierarchischem Katalog

* Rezept-basierte Prompt-Kombinationen
* Lokalisierte Fehlermeldungen

@ Sicherheit

Komponente Funktion

KeychainService Sichere Speicherung (Passworter, API-Keys)
Security.framework Keychain-API, SecltemAdd/Query/Delete
S/MIME E-Mail-Signierung mit Zertifikaten
SMIMESigningService PKCS#7/CMS Signatur-Erstellung
KeychainCertificateService Zertifikat-Import (P12/PFX)

TLS 1.2/1.3 VerschlUsselte Verbindungen

W Dependencies

Externe Swift Packages via Swift Package Manager (SPM).

Package Version
swift-nio 2.65.0+
swift-nio-ssl 2.26.0+
NIOCore -
NIOPosix -
NIOSSL -

Verwendung

Async Networking
TLS/SSL fur NIO
Event Loop, Channels
POSIX Integration
SSL Context, Handler

Seite 3 | AILO Technologie-Stack v1.0

=

Projektstruktur

AILO APP/

App/

Views/

Dashboard/

Logs/

Mail/

Schreiben/

Sprechen/

Configuration/

Shared/

Services/

— A1/

— Audio/

— Mail/
IMAP/
SMTP/
Sync/
Diagnostics/

L Security/

Database/

— Dpao/

— Models/

— Schema/

L Store/

Helpers/

— Parsers/

— Security/

— U1/

L— Utilities/

Configuration/

Settings/
Language/
Resources/

AILO Handbuch

App Entry Point
SwiftUI Views

+H= H=

Business Logic

Data Layer

Utilities

Settings & Language

Assets, Plist

Technische Hinweise

Keine externen Ul-Frameworks: 100% SwiftUl
Async/Await: Durchgangig moderne Concurrency
Sendable: Thread-sichere Datenstrukturen

@MainActor: Ul-Thread-Sicherheit

Codable: JSON-Serialisierung fir alle Modelle
Identifiable: UUID-basierte Entitaten

Keine CocoaPods/Carthage: Nur SPM fir Dependencies

AILO Handbuch — Teil 6: Technologie-Stack

Version 1.0 | Dezember 2025

Seite 4 | AILO Technologie-Stack v1.0

Teil 6: Technologie-Stack

	AILO_Handbuch_1.0_Inhaltsverzeichnis
	AILO_Handbuch_1.1_App_Entry_Navigation
	AILO_Handbuch_1.2_Dashboard
	AILO_Handbuch_1.3_Logs_System
	AILO_Handbuch_1.4_Schreiben
	AILO_Handbuch_1.5_Sprechen
	AILO_Handbuch_1.6_Mail_Feature
	AILO_Handbuch_1.7_Konfiguration
	AILO_Handbuch_1.8_PrePrompt_Katalog
	AILO_Handbuch_1.9_Shared_Components
	AILO_Handbuch_2.1_KI_Integration
	AILO_Handbuch_2.2_Mail_Services
	AILO_Handbuch_2.3_IMAP_Implementation
	AILO_Handbuch_2.4_SMTP_Implementation
	AILO_Handbuch_2.5_PrePrompt_Management
	AILO_Handbuch_2.6_Audio_Speech
	AILO_Handbuch_2.7_Sicherheit
	AILO_Handbuch_3.1_Database_Schema
	AILO_Handbuch_3.2_DAO_Implementations
	AILO_Handbuch_3.3_DAO_Utilities
	AILO_Handbuch_3.4_Datenmodelle
	AILO_Handbuch_3.5_DataStore
	AILO_Handbuch_4.1_IMAP_MIME_Parser
	AILO_Handbuch_4.2_Utilities
	AILO_Handbuch_5.1_Settings_Keys
	AILO_Handbuch_5.2_Lokalisierung
	AILO_Handbuch_5.3_Mail_Account_Config
	AILO_Handbuch_6_Technologie_Stack

