
AILO Handbuch | Inhaltsverzeichnis v1.0

Seite 1 von 8

📚 AILO Handbuch
Vollständige Dokumentation aller Views, Funktionen und technischen Komponenten

28+
Views

12
Services

8
DAOs

2
Sprachen

📱 Teil 1: Views & Features

▸ 1.1 App Entry & Navigation
• AILO_APPApp.swift – App-Einstiegspunkt App/
• ContentView.swift – Root-View mit Tab-Navigation
• NativeApp.swift – Platform-spezifische Anpassungen
• Tab-Navigation: Dashboard, Mail, Logs, Settings

▸ 1.2 Dashboard
• DashboardView.swift – Hauptübersicht Views/Dashboard/
• Anstehende Erinnerungen (Upcoming Reminders)
• Zuletzt hinzugefügte Einträge (Recent Entries)
• App-Banner (Light/Dark Mode)
• Quick Actions zu Write, Speak, Logs

▸ 1.3 Logs System
• LogsView.swift – Auswahlhub (Write/Speak/List) Views/Logs/
• LogsListView.swift – Liste aller Einträge Views/LogsList/
• TextLogDetailView.swift – Detail-Ansicht mit KI-Überarbeitung
• Volltextsuche über alle Logs
• Swipe-Actions: Mail, Play, Delete
• Audio-Player Integration

▸ 1.4 Schreiben (Write)
• SchreibenView.swift – Neue Text-Einträge Views/Schreiben/
• Titel & Kategoriezuweisung
• Tags-System (mehrere Tags pro Eintrag)
• Erinnerungen mit DatePicker
• E-Mail-Import Dialog
• Clipboard-Integration

▸ 1.5 Sprechen (Speak)
• SprechenView.swift – Audio-Aufnahme Views/Sprechen/
• Live-Transkription während Aufnahme
• AudioRecorder-Klasse (AVFoundation)
• LiveTranscriber-Klasse (SFSpeechRecognizer)
• Pegel-Anzeige (Level Meter)
• Pause/Resume Funktionalität
• Silence Detection für automatische Chunks

AILO Handbuch | Inhaltsverzeichnis v1.0

Seite 2 von 8

▸ 1.6 Mail Feature
• MailInboxView.swift – Posteingang Views/Mail/
• MessageDetailView.swift – E-Mail-Ansicht
• ComposeMailView.swift – Neue E-Mail verfassen
• SchreibenMailView.swift – Mail-Import für Logs
• Filter: Alle / Ungelesen / Markiert
• Sortierung: Neueste / Nach Absender
• Aktionen: Reply, Reply All, Forward
• Als Log speichern (Create Log)
• Flag/Unflag, Read/Unread Toggle
• Technische Header anzeigen
• Anhänge-Verwaltung

▸ 1.7 Konfiguration (Settings)
• ConfigView.swift – Einstellungen-Hauptseite Views/Configuration/
• AIManagerView.swift – KI-Provider verwalten
• AIEditor.swift – Provider bearbeiten
• PrePromptManager.swift – Pre-Prompts verwalten
• PrePromptEditor.swift – Pre-Prompt bearbeiten
• PrePromptCatalogView.swift – Hierarchischer Katalog
• MailManager.swift – E-Mail-Konten verwalten
• MailEditor.swift – Konto-Details bearbeiten
• Categories.swift – Kategorien verwalten

▸ 1.8 Pre-Prompt Katalog System
• PrePromptCatalogView.swift – Hierarchische Ordnerstruktur
• PrePromptPicker.swift – Auswahl-Dialog
• PrePromptCatalogPickerSheet.swift – Sheet-Variante
• RecipeEditor – Rezept-Kombinationen
• CookbookView – Kochbuch-Verwaltung
• Export/Import Funktionalität (JSON)
• Standard-Kategorien: Mail, Reply, Forward, Analyze, Notes

▸ 1.9 Shared Components
• MailComposer.swift – E-Mail Compose Sheet Views/Shared/
• AudioPlayerView.swift – Audio-Wiedergabe
• SelectionCard.swift – Kachel-Komponente
• LabeledSlider.swift – Slider mit Label
• MarkdownHelper.swift – Markdown-Rendering

AILO Handbuch | Inhaltsverzeichnis v1.0

Seite 3 von 8

⚙ Teil 2: Services & Business Logic

▸ 2.1 KI-Integration
• AIClient.swift – HTTP-Client für KI-APIs Services/AI/
• OpenAI-kompatible API (/v1/chat/completions)
• Ollama API (/api/chat, /api/generate)
• Automatischer Fallback zwischen Providern
• Error Handling mit lokalisierten Meldungen

▸ 2.2 Mail Services
• MailRepository.swift – Zentrale Schnittstelle Services/Mail/Sync/
• MailSyncEngine.swift – 5-Phasen Synchronisation
• MailProcessorAdapter.swift – Engine-Repository Bridge
• ViewportSyncManager.swift – Viewport-basiertes Laden
• MailSendReceive.swift – IMAP/SMTP Transport Helpers/Utilities/
• MailHealthMonitor.swift – Verbindungs-Health-Check
• FolderDiscoveryService.swift – Ordner-Erkennung

▸ 2.3 IMAP Implementation
• IMAPConnection.swift – Verbindungsmanagement Services/Mail/IMAP/
• IMAPCommands.swift – IMAP-Befehle
• IMAPParsers.swift – Response-Parsing
• Unterstützte Befehle: LOGIN, SELECT, FETCH, SEARCH, LIST, STORE
• ENVELOPE, BODYSTRUCTURE, FLAGS Parsing
• TLS/StartTLS Support

▸ 2.4 SMTP Implementation
• SMTPAbstractions.swift – Abstrakte Interfaces Services/Mail/SMTP/
• SMTPClient.swift – SMTP-Verbindung
• MailSendService.swift – Outbox-Verwaltung
• S/MIME Signing Support

▸ 2.5 Pre-Prompt Management
• PrePromptCatalogManager.swift – Singleton Manager Helpers/Utilities/
• Hierarchische Menüstruktur (PrePromptMenuItem)
• Preset-Verwaltung (AIPrePromptPreset)
• Rezept-System (PrePromptRecipe)
• Kochbuch-Struktur (Cookbook, RecipeMenuItem)
• Migration von Legacy-Daten
• UserDefaults Persistierung

▸ 2.6 Audio & Speech
• AudioRecorder (in SprechenView) – AVFoundation Views/Sprechen/
• LiveTranscriber – SFSpeechRecognizer Integration
• Chunk-basierte Transkription
• Silence Detection (Stille-Erkennung)
• On-Device Recognition Support

▸ 2.7 Sicherheit
• KeychainService.swift – Sichere Speicherung Services/

AILO Handbuch | Inhaltsverzeichnis v1.0

Seite 4 von 8

• API-Keys verschlüsselt
• E-Mail-Passwörter verschlüsselt
• S/MIME Zertifikate

AILO Handbuch | Inhaltsverzeichnis v1.0

Seite 5 von 8

🗄 Teil 3: Data Access Layer (DAOs)

▸ 3.1 Database Schema
• MailSchema.swift – Tabellen-Definitionen Database/Schema/
• Tabellen: accounts, folders, msg_header, msg_body, attachments, outbox
• Blob Storage: blob_meta, mime_parts, render_cache
• SQLite als Datenbank-Engine

▸ 3.2 DAO Implementations
• BaseDAO.swift – Basis-Klasse für alle DAOs Database/DAO/
• AccountDAO.swift – Account-Verwaltung
• FolderDAO.swift – Ordner-Verwaltung
• MailReadDAO.swift – Lese-Operationen
• MailWriteDAO.swift – Schreib-Operationen
• AttachmentDAO.swift – Anhang-Verwaltung
• OutboxDAO.swift – Outbox-Queue
• DAOFactory.swift – Factory Pattern

▸ 3.3 DAO Utilities
• DAOHelpers.swift – SQLite Extensions
• DAOPerformanceMonitor – Query-Timing
• DAOTransactionManager – Batch-Operationen
• SQLQueryBuilder – Query-Konstruktion
• DAOSchemaValidator – Schema-Validierung

▸ 3.4 Datenmodelle
• LogEntry.swift – Text/Audio Log Database/Models/
• AccountEntity – E-Mail-Account
• FolderEntity – Ordner
• MessageHeaderEntity – E-Mail-Header
• MessageBodyEntity – E-Mail-Body
• AttachmentEntity – Anhang
• AIPrePromptPreset – Pre-Prompt Daten
• PrePromptMenuItem – Menü-Struktur
• PrePromptRecipe – Rezept
• Cookbook – Kochbuch

▸ 3.5 DataStore (Logs)
• DataStore.swift – ObservableObject Database/Store/
• JSON-basierte Persistierung
• CRUD-Operationen für LogEntry
• Audio-URL Management

AILO Handbuch | Inhaltsverzeichnis v1.0

Seite 6 von 8

🔧 Teil 4: Helpers & Parser

▸ 4.1 IMAP/MIME Parser
• IMAPParsers.swift – ENVELOPE, FLAGS, LIST Parsing Services/Mail/IMAP/
• RFC2047Decoder – Encoded-Word Dekodierung Helpers/Parsers/
• RFC2047Test.swift – Parser-Tests
• UTF-8 / ISO-8859-1 Handling
• Quoted-Printable / Base64 Dekodierung

▸ 4.2 Utilities
• MailTransportStubs.swift – Transport-Abstraktion Helpers/Utilities/
• CancellationToken.swift – Task-Abbruch
• MarkdownHelper.swift – MD-Rendering
• PrePromptCatalogManager.swift – Katalog-Verwaltung
• PrePromptPicker.swift – Picker UI

⚙ Teil 5: Konfiguration

▸ 5.1 Settings Keys
• SettingsKeys.swift – UserDefaults Keys Configuration/Settings/
• kAIServerAddress, kAIServerPort, kAIAPIKey, kAIModel
• kAIPresetsKey, kAISelectedPresetKey
• kPrePromptMenuKey, kPrePromptRecipesKey
• kCookbooksKey, kRecipeMenuKey
• kCategories
• kMicSensitivity, kSilenceThreshold, kChunkSeconds
• kSpeechLang

▸ 5.2 Lokalisierung
• Localizable.strings (de) Configuration/Language/de.lproj/
• Localizable.strings (en) Configuration/Language/en.lproj/
• Key-Pattern: feature.view.element[.state|action|hint]
• ~500 lokalisierte Strings pro Sprache

▸ 5.3 Mail Account Configuration
• MailAccountConfig – Account-Struktur
• IMAP: Host, Port, Encryption, Username, Password
• SMTP: Host, Port, Encryption, Auth Method
• Sync Limits: Initial, Refresh, Incremental
• Special Folders: Inbox, Sent, Drafts, Trash, Spam
• S/MIME Signing Configuration

AILO Handbuch | Inhaltsverzeichnis v1.0

Seite 7 von 8

🛠 Teil 6: Technologie-Stack

📱 Plattform
• iOS 16.0+
• macOS 13.0+ (Catalyst)
• Swift 5.9+
• Xcode 15.0+

🎨 UI Framework
• SwiftUI (100%)
• Combine für Reactive
• NavigationStack
• @Observable (iOS 17+)

💾 Datenbank
• SQLite3 (direkt)
• DAO Pattern
• JSON für Logs
• UserDefaults für Settings

🎙 Audio
• AVFoundation
• AVAudioRecorder
• AVAudioSession
• m4a Format

🗣 Speech
• Speech Framework
• SFSpeechRecognizer
• On-Device Recognition
• Live Transcription

📧 Netzwerk
• URLSession (HTTP)
• IMAP (Custom Implementation)
• SMTP (Custom Implementation)
• TLS/StartTLS

🤖 KI-Integration
• OpenAI API (v1/chat)
• Ollama API
• Custom Endpoints
• Stream Support (geplant)

🔐 Sicherheit
• Keychain Services
• S/MIME Signing
• Lokale Speicherung
• Keine Cloud-Sync

AILO Handbuch | Inhaltsverzeichnis v1.0

📁 Teil 7: Projektstruktur
AILO_APP/
├── App/ # App Entry Point
│ ├── AILO_APPApp.swift
│ ├── ContentView.swift
│ └── NativeApp.swift
│
├── Views/ # UI Layer
│ ├── Dashboard/DashboardView.swift
│ ├── Logs/LogsView.swift
│ ├── LogsList/LogsListView.swift
│ ├── Schreiben/SchreibenView.swift
│ ├── Sprechen/SprechenView.swift
│ ├── Mail/
│ │ ├── MailInboxView.swift
│ │ ├── MessageDetailView.swift
│ │ └── ComposeMailView.swift
│ ├── Configuration/
│ │ ├── ConfigView.swift
│ │ ├── AIManagerView.swift
│ │ ├── PrePromptManager.swift
│ │ └── MailManager.swift
│ └── Shared/
│ ├── MailComposer.swift
│ └── AudioPlayerView.swift
│
├── Services/ # Business Logic
│ ├── AI/AIClient.swift
│ ├── Mail/
│ │ ├── Sync/MailRepository.swift
│ │ ├── IMAP/IMAPConnection.swift
│ │ └── SMTP/SMTPAbstractions.swift
│ └── KeychainService.swift
│
├── Database/ # Data Layer
│ ├── Schema/MailSchema.swift
│ ├── DAO/
│ │ ├── BaseDAO.swift
│ │ ├── AccountDAO.swift
│ │ └── DAOFactory.swift
│ ├── Models/LogEntry.swift
│ └── Store/DataStore.swift
│
├── Configuration/ # Settings & i18n
│ ├── Settings/SettingsKeys.swift
│ └── Language/
│ ├── de.lproj/Localizable.strings
│ └── en.lproj/Localizable.strings
│
├── Helpers/ # Utilities
│ ├── Parsers/RFC2047Decoder.swift
│ └── Utilities/PrePromptCatalogManager.swift
│
└── Resources/ # Assets
 ├── Assets.xcassets
 └── Info.plist

───────────────────────────────────────
AILO Handbuch – Inhaltsverzeichnis v1.0

Erstellt: Dezember 2025

Seite 8 von 8

AILO Handbuch | 1.1 App Entry & Navigation

Seite 1 | AILO v1.0 | Dezember 2025

📱 1.1 App Entry & Navigation
App-Einstiegspunkt und Root-Navigation des AILO-Systems

📁 Pfad: AILO_APP/App/
🔧 Technologie: SwiftUI, @main, NavigationStack

Übersicht
Der App Entry Point bildet das Fundament der AILO-Applikation. Er initialisiert alle
notwendigen Services, konfiguriert die Hauptnavigation und stellt die grundlegende
Tab-Struktur bereit.

Dateien
AILO_APPApp.swift
Der Haupt-Einstiegspunkt der iOS-Applikation mit @main-Attribut.

Funktionen
• App-Lifecycle Management via @main
• WindowGroup für Multi-Window Support
• Environment Objects Initialisierung
• DataStore Injection für Logs-System
• App-weite State-Verwaltung

ContentView.swift
Die Root-View mit der zentralen Tab-Navigation der Applikation.

Tab-Struktur
Tab Icon Beschreibung

Dashboard 🏠 house.fill Hauptübersicht mit Quick Actions
Mail ✉ envelope.fill E-Mail-Posteingang & Verwaltung
Logs 📝 doc.text.fill Text- & Audio-Einträge (Write/Speak)
Settings ⚙ gearshape.fill Konfiguration & Einstellungen

NativeApp.swift
Platform-spezifische Anpassungen für iOS und macOS (Catalyst).

Funktionen
• Plattform-Erkennung (iOS vs. macOS)
• Screen-Size Anpassungen

AILO Handbuch | 1.1 App Entry & Navigation

Seite 2 | AILO v1.0 | Dezember 2025

• Keyboard-Handling Unterschiede
• Platform-spezifische UI-Elemente

ℹ Technischer Hinweis
Die Tab-Navigation nutzt NavigationStack (iOS 16+) für moderne Navigation mit
programmatischer Steuerung und Deep-Link Support.

Abhängigkeiten
Der App Entry Point initialisiert folgende zentrale Komponenten:

Komponente Funktion
DataStore Logs-Verwaltung als EnvironmentObject
MailRepository Mail-Synchronisation & IMAP/SMTP
AIClient KI-Provider Integration (OpenAI/Ollama)
KeychainService Sichere Speicherung von Credentials

───────────────────────────────────────
AILO Handbuch — Kapitel 1.1

Version 1.0 | Dezember 2025

AILO Handbuch | 1.2 Dashboard

Seite 1 | AILO v1.0 | Dezember 2025

🏠 1.2 Dashboard
Zentrale Übersichtsseite mit Quick Actions und aktuellen Informationen

📁 Pfad: AILO_APP/Views/Dashboard/
📄 Datei: DashboardView.swift

Übersicht
Das Dashboard ist die zentrale Anlaufstelle der AILO-App nach dem Start. Es bietet
einen schnellen Überblick über anstehende Aufgaben, kürzlich erstellte Einträge und
ermöglicht den direkten Zugriff auf die Hauptfunktionen über Quick Actions.

UI-Komponenten
App-Banner
Prominentes Branding-Element im oberen Bereich des Dashboards.

• AILO Logo mit Gradient-Effekt
• Automatische Anpassung an Light/Dark Mode
• Responsive Größenanpassung

Quick Actions
Schnellzugriff-Kacheln für die wichtigsten Funktionen der App.

Aktion Icon Ziel
Write ✏ pencil SchreibenView → Neuer Text-Eintrag
Speak 🎙 mic.fill SprechenView → Audio-Aufnahme
Logs 📋 list.bullet LogsListView → Alle Einträge

Anstehende Erinnerungen
Zeigt Einträge mit gesetzten Erinnerungen, die in naher Zukunft fällig sind.

Funktionen
• Filterung — Nur Einträge mit reminderDate in der Zukunft
• Sortierung — Chronologisch nach Fälligkeit
• Limit — Maximal 5 Einträge angezeigt
• Navigation — Tap öffnet TextLogDetailView
• Leer-State — Hinweis wenn keine Erinnerungen vorhanden

AILO Handbuch | 1.2 Dashboard

Seite 2 | AILO v1.0 | Dezember 2025

Zuletzt hinzugefügte Einträge
Kompakte Übersicht der neuesten Log-Einträge für schnellen Zugriff.

Anzeige-Elemente
• Titel — Haupttext des Eintrags
• Kategorie-Badge — Farbcodierte Kategorie-Anzeige
• Datum — Erstellungsdatum formatiert
• Typ-Icon — Text (📝) oder Audio (🎙)
• Limit — Maximal 10 neueste Einträge

Technische Details
State Management

Property Beschreibung
@EnvironmentObject DataStore für Zugriff auf alle Log-Einträge
@State Lokaler UI-State für Navigation und Selektion
Computed Properties Gefilterte Listen für Reminders & Recent Entries

💡 Dark Mode Support
Das Dashboard passt sich automatisch an das System-Erscheinungsbild an. Das App-
Banner verwendet @Environment(\.colorScheme) für dynamische Farbanpassungen.

Layout-Struktur
Das Dashboard verwendet eine ScrollView mit vertikalem VStack für optimale
Scrollbarkeit auf allen Gerätegrößen.

Bereich Komponente
Header App-Banner mit Logo
Quick Actions HStack mit SelectionCard-Komponenten
Reminders Section Section mit ForEach-Liste
Recent Entries Section Section mit NavigationLink-Liste

───────────────────────────────────────
AILO Handbuch — Kapitel 1.2

Version 1.0 | Dezember 2025

AILO Handbuch | 1.3 Logs System

Seite 1 | AILO v1.0 | Dezember 2025

📝 1.3 Logs System
Verwaltung und Anzeige von Text- und Audio-Einträgen

📁 Pfade: Views/Logs/, Views/LogsList/
📄 Dateien: LogsView.swift, LogsListView.swift, TextLogDetailView.swift

Übersicht
Das Logs System ist das Herzstück der AILO-App für die Erfassung und Verwaltung
von Notizen. Es unterstützt sowohl Text-Einträge als auch Audio-Aufnahmen mit
Live-Transkription und bietet umfangreiche Such- und Bearbeitungsfunktionen.

Komponenten
LogsView.swift
Der zentrale Auswahlhub für alle Log-bezogenen Aktionen.

Navigationsoptionen
Option Icon Beschreibung

Write ✏ pencil Neuen Text-Eintrag erstellen
Speak 🎙 mic.fill Audio-Aufnahme mit Transkription
List 📋 list.bullet Alle Einträge anzeigen und durchsuchen

LogsListView.swift
Übersichtliche Listendarstellung aller gespeicherten Einträge mit Such- und
Filterfunktionen.

Volltextsuche
• Durchsucht Titel, Inhalt und Tags
• Case-insensitive Suche
• Echtzeit-Filterung während der Eingabe
• Highlight von Suchtreffern (geplant)

Swipe-Actions
Aktion Farbe Funktion

✉ Mail Blau Eintrag per E-Mail versenden
▶ Play Grün Audio-Aufnahme abspielen (nur Audio-Logs)
🗑 Delete Rot Eintrag löschen (mit Bestätigung)

AILO Handbuch | 1.3 Logs System

Seite 2 | AILO v1.0 | Dezember 2025

TextLogDetailView.swift
Detaillierte Ansicht eines einzelnen Eintrags mit Bearbeitungs- und KI-Funktionen.

Anzeige-Elemente
• Titel — Bearbeitbar mit Inline-Editor
• Inhalt — Vollständiger Text mit Markdown-Rendering
• Kategorie — Badge mit Farbcodierung
• Tags — Chip-Liste aller zugewiesenen Tags
• Erinnerung — Datum und Uhrzeit falls gesetzt
• Erstellungsdatum — Formatierte Zeitangabe

KI-Überarbeitung

🤖 KI-Integration
Die KI-Überarbeitung nutzt den konfigurierten AI-Provider (OpenAI/Ollama) mit Pre-Prompts
aus dem Katalog. Der Benutzer kann das Ergebnis übernehmen, verwerfen oder erneut
generieren.

• Pre-Prompt Auswahl — Aus hierarchischem Katalog
• Verarbeitung — Asynchron mit Ladeanzeige
• Ergebnis-Vorschau — Diff-Ansicht Original vs. Überarbeitet
• Aktionen — Übernehmen, Verwerfen, Neu generieren

Audio-Player Integration
Für Audio-Logs steht ein integrierter Player mit erweiterten Funktionen zur
Verfügung.

Feature Beschreibung
Play/Pause Wiedergabe starten und pausieren
Fortschrittsbalken Visuelle Anzeige und Seek-Funktion
Zeitanzeige Aktuelle Position / Gesamtdauer
Skip-Buttons ±15 Sekunden vor/zurück springen
Geschwindigkeit 0.5x, 1x, 1.5x, 2x Wiedergabe

ℹ Technischer Hinweis
Audio-Dateien werden im m4a-Format gespeichert und über AVAudioPlayer
wiedergegeben. Die URLs werden im DataStore referenziert.

AILO Handbuch | 1.3 Logs System

Seite 3 | AILO v1.0 | Dezember 2025

Datenmodell: LogEntry
Zentrale Datenstruktur für alle Log-Einträge im System.

Property Typ Beschreibung
id UUID Eindeutige Identifikation
title String Titel des Eintrags
content String Hauptinhalt / Transkription
category String? Optionale Kategorie-Zuweisung
tags [String] Liste von Tags
reminderDate Date? Optionale Erinnerung
audioURL URL? Pfad zur Audio-Datei (nur Audio-Logs)
createdAt Date Erstellungszeitpunkt

───────────────────────────────────────
AILO Handbuch — Kapitel 1.3

Version 1.0 | Dezember 2025

AILO Handbuch | 1.4 Schreiben (Write)

Seite 1 | AILO v1.0 | Dezember 2025

✏ 1.4 Schreiben (Write)
Erstellen neuer Text-Einträge mit Kategorien, Tags und Erinnerungen

📁 Pfad: AILO_APP/Views/Schreiben/
📄 Datei: SchreibenView.swift

Übersicht
Die SchreibenView ermöglicht das Erstellen neuer Text-Einträge in der AILO-App.
Sie bietet ein umfassendes Formular mit Titel, Inhalt, Kategoriezuweisung, Tags-
System, Erinnerungsfunktion sowie Import-Möglichkeiten aus E-Mail und
Zwischenablage.

Formularfelder
Titel
Einzeiliges Textfeld für die Überschrift des Eintrags.

• Pflichtfeld — Muss ausgefüllt werden
• Placeholder — "Titel eingeben..."
• Validierung — Mindestens 1 Zeichen
• Keyboard — Default mit Auto-Capitalization

Inhalt
Mehrzeiliges Textfeld für den Hauptinhalt des Eintrags.

• TextEditor — SwiftUI-native Komponente
• Unbegrenzte Länge — Scrollbar bei Überlauf
• Markdown-Support — Wird in Detail-Ansicht gerendert
• Minimale Höhe — 200pt für bessere Bedienbarkeit

Kategoriezuweisung
Dropdown-Auswahl aus den benutzerdefinierten Kategorien.

Eigenschaft Beschreibung
Komponente Picker mit .menu Style
Datenquelle UserDefaults (kCategories)
Standard "Allgemein" als Fallback
Farbcodierung Jede Kategorie hat zugewiesene Farbe

AILO Handbuch | 1.4 Schreiben (Write)

Seite 2 | AILO v1.0 | Dezember 2025

Tags-System
Flexibles Tagging-System für erweiterte Kategorisierung und Suche.

Funktionen
• Mehrfach-Tags — Beliebig viele Tags pro Eintrag
• Eingabe — TextField mit Return-Bestätigung
• Chip-Darstellung — Tags als löschbare Chips
• Duplikat-Prüfung — Keine doppelten Tags erlaubt
• Vorschläge — Basierend auf existierenden Tags (geplant)

💡 UI-Verhalten
Tags werden als horizontale FlowLayout-Chips angezeigt. Jeder Chip hat ein ×-Symbol zum
Entfernen. Das Eingabefeld erscheint am Ende der Chip-Reihe.

Erinnerungen
Optionale Erinnerungsfunktion mit Datum und Uhrzeit.

Element Beschreibung
Toggle Aktiviert/Deaktiviert die Erinnerung
DatePicker Auswahl von Datum und Uhrzeit
Minimum Aktuelles Datum (keine Vergangenheit)
Format Lokalisiert (DE/EN)

Import-Funktionen
E-Mail-Import Dialog
Importiert Inhalte aus E-Mails als neuen Log-Eintrag.

• Auslöser — Toolbar-Button mit envelope.open Icon
• Sheet-Präsentation — Modal über SchreibenMailView
• Auswahl — E-Mail aus Posteingang wählen
• Import-Optionen — Betreff als Titel, Body als Inhalt
• Anhänge — Optional mit importieren (geplant)

Clipboard-Integration
Schnelles Einfügen von Inhalten aus der Zwischenablage.

• Button — Toolbar mit doc.on.clipboard Icon
• Verhalten — Fügt am Cursor oder ans Ende ein
• Unterstützte Formate — Plain Text, Rich Text
• Feedback — Kurze Vibration bei Erfolg

AILO Handbuch | 1.4 Schreiben (Write)

Seite 3 | AILO v1.0 | Dezember 2025

ℹ Technischer Hinweis
Der Clipboard-Zugriff erfolgt über UIPasteboard.general. Ab iOS 16 wird der Benutzer bei
erstem Zugriff zur Bestätigung aufgefordert.

State Management
Property Typ Beschreibung

@State title String Titel des Eintrags
@State content String Hauptinhalt des Eintrags
@State category String Ausgewählte Kategorie
@State tags [String] Liste der Tags
@State hasReminder Bool Erinnerung aktiviert?
@State reminderDate Date Gewähltes Erinnerungsdatum
@State showMailImport Bool Mail-Import Sheet anzeigen

Speichern-Aktion
Der Speichervorgang erstellt einen neuen LogEntry und persistiert ihn über den
DataStore.

Ablauf
• 1. Validierung — Titel muss ausgefüllt sein
• 2. LogEntry erstellen — Mit UUID, Zeitstempel und allen Feldern
• 3. DataStore.add() — Persistierung in JSON-Datei
• 4. Navigation zurück — dismiss() nach erfolgreichem Speichern
• 5. Feedback — Optionale Erfolgsbestätigung

───────────────────────────────────────
AILO Handbuch — Kapitel 1.4

Version 1.0 | Dezember 2025

AILO Handbuch | 1.5 Sprechen (Speak)

Seite 1 | AILO v1.0 | Dezember 2025

🎙 1.5 Sprechen (Speak)
Audio-Aufnahme mit Live-Transkription und intelligenter Stille-Erkennung

📁 Pfad: AILO_APP/Views/Sprechen/
📄 Datei: SprechenView.swift
🔧 Frameworks: AVFoundation, Speech Framework

Übersicht
Die SprechenView ermöglicht Audio-Aufnahmen mit simultanem Live-Transkription.
Sie kombiniert AVFoundation für die Aufnahme mit dem Speech Framework für
Echtzeit-Spracherkennung und bietet erweiterte Features wie Pegel-Anzeige,
Pause/Resume und automatische Chunk-Erkennung durch Stille-Detection.

Kernklassen
AudioRecorder
Zentrale Klasse für die Audio-Aufnahme basierend auf AVFoundation.

Property Typ Beschreibung
audioRecorder AVAudioRecorder? Native Audio-Recorder Instanz
isRecording Bool Aufnahme-Status Flag
isPaused Bool Pause-Status Flag
audioLevel Float Aktueller Pegel (0.0 - 1.0)
recordingURL URL? Pfad zur Audio-Datei

Audio-Einstellungen
Einstellung Wert

Format m4a (AAC)
Sample Rate 44100 Hz
Channels 1 (Mono)
Encoder Quality .high

AILO Handbuch | 1.5 Sprechen (Speak)

Seite 2 | AILO v1.0 | Dezember 2025

LiveTranscriber
Echtzeit-Spracherkennung mit dem Speech Framework für Live-Transkription.

Kernkomponenten
• SFSpeechRecognizer — Apple Speech Recognition Engine
• SFSpeechAudioBufferRecognitionRequest — Audio-Buffer für Streaming
• SFSpeechRecognitionTask — Aktiver Recognition-Task
• AVAudioEngine — Audio-Pipeline für Mic-Input

⚠Wichtig: Berechtigungen
Die App benötigt NSSpeechRecognitionUsageDescription und NSMicrophoneUsageDescription in
Info.plist. Der User muss beide Berechtigungen erteilen.

Sprachunterstützung
Sprache Locale On-Device

Deutsch de-DE ✓
Englisch (US) en-US ✓
Englisch (UK) en-GB ✓

UI-Komponenten
Pegel-Anzeige (Level Meter)
Visuelle Darstellung des aktuellen Audio-Pegels während der Aufnahme.

• Animierte Balken — Echtzeit-Visualisierung der Lautstärke
• Farbverlauf — Grün → Gelb → Rot bei steigendem Pegel
• Update-Rate — 60 FPS via CADisplayLink
• Dezibel-Normalisierung — Umrechnung von dB zu 0.0-1.0

Aufnahme-Steuerung
Button Icon Aktion

Start 🔴 circle.fill Aufnahme und Transkription starten
Pause ⏸ pause.fill Aufnahme pausieren (Resume möglich)
Stop ⏹ stop.fill Aufnahme beenden und speichern
Cancel ❌ xmark Aufnahme verwerfen

AILO Handbuch | 1.5 Sprechen (Speak)

Seite 3 | AILO v1.0 | Dezember 2025

Silence Detection
Intelligente Erkennung von Sprechpausen für automatische Chunk-Segmentierung.

🤖 Automatische Chunks
Bei erkannter Stille wird die bisherige Transkription als Chunk finalisiert. Dies ermöglicht
natürliche Absätze ohne manuelle Eingabe und verbessert die KI-Verarbeitung durch
sinnvolle Segmentierung.

Konfigurierbare Parameter
Parameter Default Settings Key

Mikrofon-Empfindlichkeit 0.5 kMicSensitivity
Stille-Schwellwert -40 dB kSilenceThreshold
Chunk-Dauer 2.0 Sek kChunkSeconds

ℹ On-Device Recognition
AILO nutzt requiresOnDeviceRecognition = true für vollständig offline Transkription. Dies
gewährleistet Datenschutz und funktioniert ohne Internetverbindung.

───────────────────────────────────────
AILO Handbuch — Kapitel 1.5

Version 1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.6 Mail Feature

Seite 1 | AILO v1.0 | Dezember 2025

📧 1.6 Mail Feature
Vollständige E-Mail-Verwaltung mit IMAP/SMTP-Integration

Übersicht
Das Mail Feature ermöglicht die vollständige Verwaltung von E-Mails innerhalb der AILO
App. Es bietet nahtlose Integration mit bestehenden E-Mail-Konten über IMAP und SMTP,
intelligente Filterung und Sortierung sowie die Möglichkeit, E-Mails als Logs zu speichern.

Eigenschaft Beschreibung
Verzeichnis Views/Mail/
Haupt-Views MailView, MessageDetailView, ComposeMailView
Protokolle IMAP (Empfang), SMTP (Versand), TLS/StartTLS
Datenbank SQLite (accounts, folders, msg_header, msg_body,

attachments)

Komponenten
MailView.swift – Posteingang
Die zentrale View für die E-Mail-Übersicht mit adaptivem Layout für Compact und Regular
Size Classes.

• Mailbox-Navigation: Inbox, Outbox, Sent, Drafts, Trash, Spam
• Schnellfilter: Alle / Ungelesen / Markiert (Segmented Control)
• Suchfunktion mit Echtzeit-Filterung
• Badge-Anzeige für ungelesene Nachrichten
• Pull-to-Refresh für Synchronisation
• Viewport-basiertes Laden (ViewportSyncManager)

Size Class Layout
Compact (iPhone) CompactMessageListView mit NavigationLink zur Detail-

Ansicht
Regular (iPad) RegularSplitView mit Master-Detail-Layout

AILO Handbuch | Kapitel 1.6 Mail Feature

Seite 2 | AILO v1.0 | Dezember 2025

MessageDetailView.swift – E-Mail-Ansicht
Detaillierte Ansicht einer einzelnen E-Mail mit allen Aktionen und Anhang-Verwaltung.

Header-Informationen
• Betreff, Absender (From), Empfänger (To, CC, BCC)
• Datum und Uhrzeit des Empfangs
• Technische Header anzeigen/verbergen (Source View)

Aktionen
Aktion Icon Beschreibung
Reply arrowshape.turn.up.left Antwort an Absender
Reply All arrowshape.turn.up.left.2 Antwort an alle Empfänger
Forward arrowshape.turn.up.right E-Mail weiterleiten (mit Anhängen)
Create Log doc.badge.plus E-Mail als Log-Eintrag speichern
Flag/Unflag flag / flag.fill Markierung setzen/entfernen
Read/Unread envelope / envelope.open Gelesen/Ungelesen Status wechseln
Delete trash E-Mail in Papierkorb verschieben

Anhänge-Verwaltung
• Automatische Erkennung von Anhängen (BODYSTRUCTURE)
• QuickLook-Vorschau für unterstützte Dateitypen
• Inline-Bilder (CID-Referenzen) werden als Base64 Data-URLs eingebettet
• Alle Anhänge speichern mit Share-Sheet

ComposeMailView.swift – E-Mail verfassen
Formular zum Erstellen neuer E-Mails sowie für Antworten und Weiterleitungen.

Eingabefelder
• Von (From) – Absender-Account Auswahl
• An (To) – Empfänger-Adressen
• CC, BCC – Kopie-Empfänger (optional)
• Betreff (Subject)
• Nachrichtentext (Body) – Text oder HTML

Anhänge hinzufügen
• Fotos aus Bibliothek (PhotosPicker)
• Dateien aus Files-App (DocumentPicker)
• Anhänge aus Original-Mail bei Forward

KI-Integration
• Pre-Prompt Auswahl aus Katalog
• Automatische E-Mail-Generierung basierend auf Kontext
• Format-aware: HTML für HTML-Antworten, Text für Text

AILO Handbuch | Kapitel 1.6 Mail Feature

Seite 3 | AILO v1.0 | Dezember 2025

Technische Details
Datenmodelle
Entity Verwendung
MessageHeaderEntity E-Mail-Metadaten (Subject, From, To, Date, Flags, UID)
MessageBodyEntity E-Mail-Inhalt (HTML/Text Body, Content-Type)
AttachmentEntity Anhang-Metadaten (Filename, MIME-Type, Size, Content-

ID)
FolderEntity IMAP-Ordner (Name, Path, Special Folder Type)

Lokalisierung
Alle UI-Texte sind vollständig lokalisiert (Deutsch/Englisch). Die Lokalisierungsschlüssel
folgen dem Pattern: app.mail.[view].[element]

Schlüssel Deutsch
app.mail.inbox Posteingang
app.mail.compose.title Verfassen
app.mail.action.reply Antworten
app.mail.action.forward Weiterleiten

Abhängigkeiten
• MailRepository – Zentrale Schnittstelle für Mail-Operationen
• MailSyncEngine – 5-Phasen Synchronisation
• IMAPConnection – IMAP-Protokoll-Handler
• MailDAOs – MailReadDAO, MailWriteDAO, AttachmentDAO
• ViewportSyncManager – On-Demand-Laden sichtbarer E-Mails

───────────────────────────────────────
AILO Handbuch – Kapitel 1.6 Mail Feature

Version 1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.7 Konfiguration

Seite 1 | AILO v1.0 | Dezember 2025

⚙ 1.7 Konfiguration (Settings)
Zentrale Einstellungsverwaltung für KI-Provider, E-Mail-Konten und Pre-Prompts

Übersicht
Die Konfigurationsseite bietet zentrale Verwaltung aller App-Einstellungen. Von hier aus
werden KI-Provider, E-Mail-Konten, Pre-Prompts, Kategorien und Aufnahme-Parameter
konfiguriert. Alle Einstellungen werden persistent in UserDefaults gespeichert.

Eigenschaft Beschreibung
Verzeichnis Views/Configuration/
Haupt-View ConfigView.swift
Sub-Views AIManagerView, PrePromptManager, MailManager,

Categories
Persistierung UserDefaults + Keychain (für Passwörter/API-Keys)

Komponenten
ConfigView.swift – Hauptseite
Die zentrale Einstellungsseite mit Sektionen für alle Konfigurationsbereiche.
Sektion Inhalt
Kategorien NavigationLink → Categories.swift
Mikrofon / Aufnahme Empfindlichkeit, Stille-Schwelle, Segmentlänge (Slider)
Sprache Spracherkennungs-Locale (de-DE, en-US, etc.)
E-Mail NavigationLink → MailManager.swift
KI NavigationLinks → AIManagerView, PrePromptManager

AILO Handbuch | Kapitel 1.7 Konfiguration

Seite 2 | AILO v1.0 | Dezember 2025

AIManagerView.swift – KI-Provider
Verwaltung der KI-Provider (OpenAI, Ollama, Custom). Unterstützt mehrere Provider mit
Fallback-Mechanismus.

Funktionen
• Provider hinzufügen / bearbeiten / löschen
• Aktiven Provider setzen (Standard)
• Modell-Liste vom Server abrufen
• Temperatur-Einstellung pro Provider

Provider-Typ API-Endpunkt Authentifizierung
OpenAI /v1/chat/completions Bearer Token (API-Key)
Ollama /api/chat, /api/generate Keine (lokal)
Custom Benutzerdefiniert Optional (API-Key)

AIEditor.swift – Provider bearbeiten
• Anzeigename für Provider
• Typ-Auswahl (OpenAI / Ollama / Custom)
• Serveradresse und Port
• API-Schlüssel (im Keychain gespeichert)
• Modell-Auswahl mit Reload-Funktion
• Temperatur (0.0 – 2.0)

PrePromptManager.swift – Pre-Prompts
Verwaltung von Pre-Prompt-Vorlagen, die dem KI-Modell als System-Prompt vorangestellt
werden.

• Pre-Prompts erstellen / bearbeiten / löschen
• Name, Icon, Schlagwörter (Keywords) pro Preset
• Standard-Preset festlegen
• NavigationLink → PrePromptCatalogView für hierarchische Struktur

PrePromptEditor.swift – Pre-Prompt bearbeiten
Feld Beschreibung
Name Kurzes Label (z.B. Korrektur, Protokoll)
Keywords Metadaten (Format: Schlüssel: Wert; getrennt durch ;)
Inhalt Der eigentliche Pre-Prompt-Text für das KI-Modell
Icon Emoji zur visuellen Kennzeichnung (max. 3 Zeichen)

AILO Handbuch | Kapitel 1.7 Konfiguration

Seite 3 | AILO v1.0 | Dezember 2025

MailManager.swift – E-Mail-Konten
Verwaltung der E-Mail-Konten mit IMAP/SMTP-Konfiguration.

• E-Mail-Konten hinzufügen / bearbeiten / löschen
• Aktiv/Inaktiv Status pro Konto
• Verbindungstest-Funktion
• NavigationLink → MailEditor für Details

MailEditor.swift – Konto-Details
Sektion Felder
Konto Kontoname, Anzeigename, E-Mail-Adresse, Reply-To
Eingehend (IMAP) Protokoll, Server, Port, Verschlüsselung, Username,

Passwort
Ausgehend (SMTP) Server, Port, Verschlüsselung, Auth-Methode, Username,

Passwort
Synchronisation Initial Sync, Full Sync, Incremental Sync (Anzahl Mails)
Ordner Inbox, Sent, Drafts, Trash, Spam (Ordner abrufen)
Erweitert Timeout, Logging, Auto-Mark-as-Read, S/MIME Signing

Categories.swift – Kategorien
Verwaltung der Log-Kategorien zur Organisation von Einträgen.

• Kategorien hinzufügen / bearbeiten / löschen
• Sortierung per Drag & Drop
• Verwendung in SchreibenView für Log-Zuordnung

Settings Keys (UserDefaults)
Alle Einstellungen werden über definierte Keys in UserDefaults persistiert. Datei:
Configuration/Settings/SettingsKeys.swift

Konstante Beschreibung
kAIPresetsKey JSON [AIPrePromptPreset]
kPrePromptMenuKey JSON [PrePromptMenuItem]
kCookbooksKey JSON [Cookbook]
kCategories JSON [String] Kategorien-Liste
kMicSensitivity Double 0...1 (Empfindlichkeit)
kSilenceThreshold Double -60...0 dB (Stille-Schwelle)
kSpeechLang String z.B. "de-DE"

Lokalisierung
Alle UI-Texte sind vollständig lokalisiert. Key-Pattern für Configuration:
config.[section].[element] sowie aiEditor.*, preprompts.*, mail.editor.*

───────────────────────────────────────
AILO Handbuch – Kapitel 1.7 Konfiguration

Version 1.0 | Dezember 2025

AILO Handbuch | Kapitel 1.8

Seite 1

1.8 Pre-Prompt Katalog System
Dokumentation des hierarchischen Katalog-Systems für Pre-Prompts, Rezepte und
Kochbücher in AILO.

Übersicht
Das Pre-Prompt Katalog System ermöglicht die hierarchische Organisation von KI-
Anweisungen (Pre-Prompts) in einer Ordnerstruktur. Nutzer können einzelne Pre-
Prompts erstellen, in Kategorien organisieren und zu komplexen Rezepten
kombinieren. Diese Rezepte werden in Kochbüchern verwaltet.

Hauptkomponenten
Datei Beschreibung

PrePromptCatalogView.swift Hierarchische Ordnerstruktur mit Drag &
Drop, Kontextmenüs und Navigation

PrePromptPicker.swift Auswahl-Dialog für Pre-Prompt Selektion in
anderen Views

PrePromptCatalogPickerSheet.swift Sheet-basierte Picker-Variante für modale
Darstellung

RecipeEditor Editor für Rezept-Kombinationen aus
mehreren Pre-Prompts

CookbookView.swift Kochbuch-Verwaltung für Rezept-
Organisation

PrePromptCatalogManager.swift Singleton-Manager für Katalog-Daten und
Business-Logic

Datenmodelle
PrePromptMenuItem
Repräsentiert einen Eintrag in der hierarchischen Menüstruktur. Kann entweder ein
Ordner oder ein Verweis auf ein Preset sein.

• id: UUID – Eindeutige Kennung
• name: String – Anzeigename
• icon: String – Emoji-Symbol
• parentID: UUID? – Eltern-Ordner (nil = Root)
• isFolder: Bool – Ordner oder Item
• presetID: UUID? – Verweis auf AIPrePromptPreset
• keywords: String – Schlagwörter für Kontext

AILO Handbuch | Kapitel 1.8

Seite 2

AIPrePromptPreset
Enthält den eigentlichen Pre-Prompt-Text und Metadaten.

• id: UUID – Eindeutige Kennung
• name: String – Preset-Name
• icon: String – Emoji-Symbol
• text: String – Der Pre-Prompt-Text
• keywords: String – Schlüssel-Wert-Paare

PrePromptRecipe
Kombiniert mehrere Pre-Prompts zu einem zusammengesetzten Prompt.

• id: UUID – Eindeutige Kennung
• name: String – Rezept-Name
• icon: String – Emoji-Symbol
• elementIDs: [UUID] – Referenzierte Menu-Items
• keywords: String – Zusätzliche Schlagwörter

Cookbook
Container für die Organisation von Rezepten.

• id: UUID – Eindeutige Kennung
• name: String – Kochbuch-Name
• icon: String – Emoji-Symbol
• sortOrder: Int – Sortierreihenfolge

Funktionen
Hierarchische Navigation
Die PrePromptCatalogView ermöglicht das Navigieren durch eine beliebig tiefe
Ordnerstruktur. Breadcrumb-Navigation zeigt den aktuellen Pfad an. Ordner und
Items können per Drag & Drop verschoben werden.

Rezept-Erstellung
Im RecipeEditor können Nutzer mehrere Pre-Prompts zu einem Rezept kombinieren.
Die Reihenfolge der Elemente bestimmt die Zusammensetzung des generierten
Prompts. Eine Live-Vorschau zeigt das Ergebnis an.

Keyword-System
Schlagwörter werden als Key-Value-Paare gespeichert (Format: 'Schlüssel: Wert;
Schlüssel2: Wert2'). Bei der Prompt-Generierung werden alle Keywords aus Menu-
Items, Presets und Rezepten zusammengeführt. Spätere Definitionen überschreiben
frühere.

AILO Handbuch | Kapitel 1.8

Seite 3

Export/Import
Der gesamte Katalog kann als JSON-Datei exportiert und auf anderen Geräten
importiert werden. Das Format umfasst Menu-Items, Presets, Recipes, Cookbooks
und Recipe-Menu-Items.

Standard-Kategorien
Bei der ersten Initialisierung werden folgende Kategorien automatisch erstellt:

Icon Kategorie Verwendung
✉ Mail Pre-Prompts für E-Mail-Erstellung
↩ Reply Pre-Prompts für Antwort-Mails
➡ Forward Pre-Prompts für Weiterleitungen
🔍 Analyze Pre-Prompts für Inhaltsanalyse
📝 Notes Pre-Prompts für Notizen und Logs

PrePromptCatalogManager API
Der Singleton-Manager stellt folgende öffentliche Methoden bereit:

Methode Beschreibung
children(of:) Gibt alle Kinder eines Eltern-Elements zurück
path(to:) Breadcrumb-Pfad zu einem Element
preset(withID:) Preset anhand der UUID abrufen
presets(in:) Alle Presets in einem Ordner (rekursiv)
recipe(withID:) Rezept anhand der UUID abrufen
recipes(inCookbook:) Alle Rezepte in einem Kochbuch
generatePrompt(from:) Generierten Prompt aus Rezept erstellen

Persistierung
Alle Katalog-Daten werden über UserDefaults persistiert. Die verwendeten Schlüssel
sind in SettingsKeys.swift definiert:

• kPrePromptMenuKey – Menu-Items (JSON)
• kAIPresetsKey – Pre-Prompts (JSON)
• kPrePromptRecipesKey – Rezepte (JSON)
• kCookbooksKey – Kochbücher (JSON)
• kRecipeMenuKey – Recipe-Menu-Items (JSON)

AILO Handbuch | Kapitel 1.8

Seite 4

Lokalisierung
Das Katalog-System ist vollständig in Deutsch und Englisch lokalisiert. Die
Lokalisierungs-Keys folgen dem Muster 'catalog.*' und 'cookbook.*'. Alle UI-Texte,
Fehlermeldungen und Standardkategorien sind übersetzt.

Verzeichnisstruktur
Views/Configuration/

• PrePromptCatalogView.swift
• CookbookView.swift

Helpers/Utilities/
• PrePromptCatalogManager.swift
• PrePromptPicker.swift

Database/Models/
• PrePromptMenuItem.swift
• PrePromptRecipe.swift
• Cookbook.swift
• RecipeMenuItem.swift

───────────────────────────────────────
AILO Handbuch – Kapitel 1.8

Erstellt: Dezember 2025

AILO Handbuch | Kapitel 1.9 Shared Components

Seite 1 | AILO v1.0 | Dezember 2025

🧩 1.9 Shared Components
Wiederverwendbare UI-Komponenten und Hilfsklassen

Uebersicht
Die Shared Components sind wiederverwendbare UI-Bausteine und Hilfsklassen, die in
verschiedenen Views der AILO App eingesetzt werden. Sie sorgen fuer konsistentes Design
und reduzieren Code-Duplizierung.

Eigenschaft Beschreibung
Verzeichnisse Views/Shared/, Helpers/UI/, Services/Audio/
Komponenten 5 UI-Komponenten + 1 Helper-Klasse
Frameworks SwiftUI, MessageUI, AVFoundation

Komponenten
MailComposer.swift
UIViewControllerRepresentable-Wrapper fuer MFMailComposeViewController. Ermoeglicht
das Versenden von E-Mails ueber die native iOS Mail-App.

Eigenschaften
Property Beschreibung
subject: String E-Mail-Betreff
body: String Nachrichtentext (Plain Text)
recipients: [String] Empfaenger-Adressen (optional)
attachments: [Attachment] Anhaenge mit Data, MIME-Type, Filename

Verwendung
• LogsListView: Logs per E-Mail teilen
• Audio-Logs mit m4a-Anhang versenden
• MFMailComposeViewControllerDelegate fuer Result-Handling

AILO Handbuch | Kapitel 1.9 Shared Components

Seite 2 | AILO v1.0 | Dezember 2025

AudioPlayerView.swift
Kompakte Audio-Wiedergabe-Komponente als Sheet. Nutzt AudioPlaybackController fuer
AVAudioPlayer-Integration.

Funktionen
• Play / Pause mit grossem zentralen Button
• Seek per Slider (Fortschrittsanzeige)
• Skip -10s / +10s Buttons
• Zeitanzeige: aktuelle Position / Gesamtdauer
• Automatisches Abspielen bei Oeffnen
• Presentation Detents: 25% und 50% Bildschirmhoehe

AudioPlaybackController
Methode / Property Beschreibung
load(url:) Laedt Audio-Datei, setzt AVAudioSession
play() / pause() Wiedergabe starten / pausieren
seekBy(seconds:) Relative Positionsaenderung (+/- Sekunden)
seek(to:) Absolute Position (0.0 - 1.0)
isPlaying: Bool @Published Wiedergabe-Status
progress: Double @Published Fortschritt (0.0 - 1.0)

SelectionCard
Grosse Kachel-Komponente fuer Auswahlmenues. Verwendet in LogsView fuer die
Hauptnavigation (Write, Speak, List).

Parameter
Parameter Beschreibung
icon: String SF Symbol Name (z.B. "square.and.pencil")
title: String Beschriftung der Kachel
color: Color Akzentfarbe fuer Icon und Hintergrund

Design
• HStack mit Icon (36pt) und Titel
• Icon in farbigem Container (60x60, cornerRadius 12)
• Chevron-Indikator rechts
• Schatten und abgerundete Ecken (cornerRadius 16)

AILO Handbuch | Kapitel 1.9 Shared Components

Seite 3 | AILO v1.0 | Dezember 2025

LabeledSlider
Slider mit integriertem Label und Wertanzeige. Verwendet in ConfigView fuer Mikrofon-
Einstellungen.

Parameter
Parameter Beschreibung
title: String Label-Text links vom Slider
value: Binding<Double> Gebundener Wert
range: ClosedRange Wertebereich (z.B. 0...1, -60...0)
step: Double Schrittweite
display: String Formatierte Wertanzeige (z.B. "50 %", "-30 dB")

Verwendung in ConfigView
• Mikrofon-Empfindlichkeit (0-100%)
• Stille-Schwelle (-60 bis 0 dB)
• Segmentlaenge (1-10 Sekunden)

MarkdownHelper.swift
Hilfsklasse fuer Markdown-Formatierung. Bietet statische Methoden zum Einfuegen von
Markdown-Syntax.

Methoden
Methode Funktion
insertAtLineStart(_:in:) Praefix am Zeilenanfang (# , - , etc.)
wrapSelectionBold(_:) Text mit **fett** umschliessen
wrapSelectionItalic(_:) Text mit *kursiv* umschliessen

Lokalisierung
Die Shared Components verwenden lokalisierte Strings aus den Localizable.strings-Dateien.
Relevante Key-Patterns:

Key Deutsch
mail.result.sent E-Mail gesendet
mail.result.failed E-Mail fehlgeschlagen
markdown.preview.title Vorschau
markdown.toast.copied In Zwischenablage kopiert

AILO Handbuch - Kapitel 1.9 Shared Components

Version 1.0 | Dezember 2025

AILO Handbuch | Kapitel 2.1

Seite 1

2.1 KI-Integration
Dokumentation der KI-Service-Schicht für OpenAI, Ollama und Custom Endpoints.

Übersicht
Die KI-Integration in AILO ermöglicht die Anbindung verschiedener Large Language
Models (LLMs) für Textüberarbeitung und -generierung. Der zentrale AIClient
abstrahiert die Unterschiede zwischen OpenAI-kompatiblen APIs und Ollama,
sodass Nutzer nahtlos zwischen Providern wechseln können.

Komponenten
Datei Beschreibung

AIClient.swift Zentraler HTTP-Client für alle KI-Operationen
AIEditor.swift SwiftUI-Editor für Provider-Konfiguration
AIManagerView.swift Verwaltung mehrerer KI-Provider
AIProviderConfig Datenmodell für Provider-Einstellungen

Unterstützte Provider
OpenAI
Vollständige Unterstützung der OpenAI Chat Completions API.

• Endpoint: /v1/chat/completions
• Standard-URL: https://api.openai.com
• Port: 443
• Modelle: gpt-4, gpt-4o, gpt-4o-mini, gpt-3.5-turbo
• Authentifizierung: Bearer Token (API-Key)

Mistral
OpenAI-kompatible API von Mistral AI.

• Endpoint: /v1/chat/completions
• Standard-URL: https://api.mistral.ai
• Modelle: mistral-large-latest, mistral-medium, mistral-small

Ollama
Lokale LLM-Ausführung über Ollama-Server.

• Endpoints: /api/chat, /api/generate
• Standard-URL: http://localhost
• Port: 11434
• Modelle: llama3, llama3:8b, mistral, codellama, etc.
• Authentifizierung: Optional (Bearer Token)

AILO Handbuch | Kapitel 2.1

Seite 2

Custom Endpoints
Beliebige OpenAI-kompatible Server können konfiguriert werden. Der AIClient
erkennt automatisch das API-Format anhand der URL.

AIClient API
Hauptmethode: rewrite()
Führt eine Textüberarbeitung durch. Erkennt automatisch den Provider-Typ.

Parameter Beschreibung
baseURL Server-Adresse (z.B. https://api.openai.com)
port Port-Nummer (optional, Standard: 443)
apiKey API-Schlüssel für Authentifizierung
model Modell-ID (z.B. gpt-4, llama3:8b)
prePrompt System-Prompt für Kontext und Anweisungen
userText Der zu überarbeitende Originaltext
completion Callback mit Result<String, Error>

Automatische Provider-Erkennung
Der AIClient erkennt anhand der URL automatisch den Provider-Typ:

1. URL enthält 'openai.com' oder 'mistral.ai' → OpenAI-kompatible API
2. Andere URLs → Ollama-API (/api/chat, /api/generate)
3. Fallback → Automatischer Wechsel zwischen Endpoints bei Fehlern

Error Handling
Der ClientError-Enum definiert alle möglichen Fehlerzustände mit lokalisierten
Meldungen:

Fehler Beschreibung
invalidBaseURL Ungültige Serveradresse
invalidHTTPResponse Ungültige Serverantwort
httpStatus(Int) HTTP-Fehler mit Statuscode
emptyResponse Leere Antwort vom Server
decoding JSON-Parsing fehlgeschlagen
endpointNotFound API-Endpoint nicht gefunden (404)

Provider-Konfiguration
Das AIProviderConfig-Struct speichert alle Einstellungen eines Providers:

• id: UUID – Eindeutige Kennung
• name: String – Anzeigename (z.B. 'OpenAI Prod')
• type: AIProviderType – OpenAI, Mistral, Ollama, Custom
• baseURL: String – Server-Adresse
• port: String – Port-Nummer

AILO Handbuch | Kapitel 2.1

Seite 3

• apiKey: String – API-Schlüssel (verschlüsselt gespeichert)
• model: String – Ausgewähltes Modell
• temperature: Double – Kreativitäts-Parameter (0.0-2.0)

Fallback-Mechanismus
Der AIClient implementiert einen mehrstufigen Fallback bei fehlenden oder
ungültigen Parametern:

4. Übergebene Parameter prüfen: Direkt verwendbare Werte haben Priorität
5. Ausgewählten Provider laden: Fallback auf aktiven Provider aus

UserDefaults
6. Endpoint-Fallback: Bei Ollama: /api/generate → /api/chat
7. Standardwerte: llama3:8b als Default-Modell

Modell-Discovery
Der AIEditor kann verfügbare Modelle vom Server abrufen:

• OpenAI/Mistral: GET /v1/models → data[].id
• Ollama: GET /api/tags oder /api/models → models[].name

Persistierung
Provider-Konfigurationen werden über UserDefaults gespeichert:

• config.ai.providers.list – JSON-Array aller Provider
• config.ai.providers.selected – UUID des aktiven Providers

API-Keys werden zusätzlich im iOS Keychain verschlüsselt gespeichert.

Verzeichnisstruktur
Services/AI/

• AIClient.swift
Views/Configuration/

• AIManagerView.swift
• AIEditor.swift

───────────────────────────────────────
AILO Handbuch – Kapitel 2.1

Erstellt: Dezember 2025

AILO Handbuch | Kapitel 2.2

Seite 1

2.2 Mail Services
Dokumentation der Mail-Service-Schicht mit 5-Phasen-Synchronisation, Repository-
Pattern und Viewport-basiertem Laden.

Übersicht
Die Mail Services bilden die zentrale Schicht für E-Mail-Operationen in AILO. Sie
implementieren ein Repository-Pattern als einheitliche Schnittstelle für die UI, eine 5-
Phasen-Synchronisations-Architektur für effizientes Laden und Viewport-basiertes
Sync für optimale Performance.

Komponenten
Datei Beschreibung

MailRepository.swift Zentrale Schnittstelle für UI – einziger Entry-Point
MailSyncEngine.swift 5-Phasen Synchronisations-Engine
MailProcessorAdapter.swift Bridge zwischen SyncEngine und Repository
ViewportSyncManager.swift Viewport-basiertes Laden mit Prefetch-Buffer
MailSendService.swift Outbox-Queue und SMTP-Versand
MailHealthMonitor.swift Verbindungs-Health-Check und Metriken
FolderDiscoveryService.swift Automatische Ordner-Erkennung via IMAP LIST
MailProcessor.swift MIME-Parsing und Content-Extraktion

5-Phasen Synchronisations-Architektur
Die MailSyncEngine implementiert eine strikte Trennung der Sync-Phasen für
optimale Performance und Ressourcennutzung:

Phase 1: Header-Only Sync
Schnelle Header-Synchronisation für die Mailbox-Übersicht. Verwendet IMAP
FETCH mit minimalen Daten.

• IMAP-Befehl: FETCH (FLAGS UID ENVELOPE)
• Daten: UID, From, Subject, Date, Flags
• Speicherung: msg_header Tabelle

Phase 2: Body-On-Demand
E-Mail-Body wird erst bei Bedarf (Öffnen der Mail) geladen.

• IMAP-Befehl: FETCH BODY[]
• Verarbeitung: MailProcessor für MIME-Parsing
• Speicherung: msg_body Tabelle

Phase 3: Central Processing

AILO Handbuch | Kapitel 2.2

Seite 2

Zentrale Verarbeitung von MIME-Strukturen, Charset-Konvertierung und Content-
Extraktion.

• HTML/Text-Extraktion: Multipart-Handling
• Charset-Handling: UTF-8, ISO-8859-1, etc.
• Transfer-Encoding: Quoted-Printable, Base64

Phase 4: Structured Storage
Strukturierte Speicherung in SQLite mit Blob-Storage für große Inhalte.

• Tabellen: msg_header, msg_body, attachments
• Blob-Storage: blob_meta, mime_parts, render_cache
• Indizes: accountId, folder, date für schnelle Queries

Phase 5: Bidirectional Sync
Synchronisation von Flag-Änderungen (gelesen, markiert) zurück zum Server.

• IMAP-Befehl: STORE +FLAGS / -FLAGS
• Unterstützte Flags: \Seen, \Flagged, \Deleted

MailRepository API
Das Repository ist der einzige Entry-Point für die UI. Es abstrahiert DAOs,
SyncEngine und SendService.

Methode Beschreibung
listHeaders() Alle Header eines Ordners abrufen
getBody() Body einer E-Mail laden (on-demand)
sync(accountId:) Synchronisation für Account starten
send(draft:) E-Mail in Outbox einreihen
health(accountId:) Verbindungs-Status abrufen
onChanges(accountId:) Publisher für Datenänderungen
getAllServerFolders() Alle Ordner vom Server via IMAP LIST
specialFolders() Spezialordner-Mapping abrufen

ViewportSyncManager
Optimiert die Synchronisation auf sichtbare E-Mails plus Puffer für flüssiges Scrollen.

Funktionsweise
1. Tracking: rowAppeared(uid:) / rowDisappeared(uid:)
2. Debounce: 0.3 Sekunden Verzögerung vor Sync
3. Prefetch-Buffer: ±10 UIDs um Viewport
4. Batch-Größe: Max. 30 UIDs pro Sync-Request

Konfiguration
• prefetchBuffer: 10 (UIDs vor/nach Viewport)
• debounceDelay: 0.3 Sekunden

AILO Handbuch | Kapitel 2.2

Seite 3

• maxBatchSize: 30 UIDs

Sync-Limits
Konfigurierbare Limits pro Account in den Mail-Einstellungen:

Parameter Standard Beschreibung
syncLimitInitial 50 Initiales Laden bei erstem Sync
syncLimitRefresh 100 Pull-to-Refresh Sync
syncLimitIncremental 20 Hintergrund-Sync neue Mails

Account Health Monitoring
Der MailHealthMonitor überwacht den Verbindungsstatus und liefert Health-
Metriken:

• AccountHealth.ok: Verbindung funktioniert
• AccountHealth.degraded: Eingeschränkte Funktionalität
• AccountHealth.down: Keine Verbindung möglich

Folder Discovery
Automatische Erkennung von Spezialordnern via IMAP LIST und Namensanalyse:

• inbox: INBOX (standardisiert)
• sent: Sent, Gesendet, Sent Items
• drafts: Drafts, Entwürfe
• trash: Trash, Papierkorb, Deleted
• spam: Spam, Junk

Verzeichnisstruktur
Services/Mail/Sync/

• MailRepository.swift
• MailSyncEngine.swift
• MailProcessorAdapter.swift
• ViewportSyncManager.swift
• MailSendService.swift
• MailProcessor.swift
• FolderDiscoveryService.swift

Services/Mail/Diagnostics/
• MailHealthMonitor.swift
• MailLogger.swift
• MailMetrics.swift

Helpers/Utilities/
• MailSendReceive.swift (Transport Layer)

───────────────────────────────────────

AILO Handbuch | Kapitel 2.2

Seite 4

AILO Handbuch – Kapitel 2.2
Erstellt: Dezember 2025

AILO Handbuch | Teil 2: Services & Business Logic

Seite 1 | AILO IMAP Implementation v1.0

2.3 IMAP Implementation
Services/Mail/IMAP/ • Custom IMAP Protocol Layer

Übersicht
Die IMAP-Implementation in AILO ist eine vollständig eigene Lösung, die ohne externe
Bibliotheken auf Apples Network.framework (NWConnection) aufbaut. Sie bietet sichere
Verbindungen über TLS/STARTTLS und unterstützt alle gängigen IMAP-Befehle für E-Mail-
Synchronisation.

Komponente Beschreibung
IMAPConnection Low-Level TCP/TLS Transport Layer
IMAPCommands Stateless Helper für IMAP-Befehlsausführung
IMAPParsers Response-Parsing für ENVELOPE, FLAGS,

BODYSTRUCTURE

IMAPConnection.swift
Der Low-Level Transport-Layer für IMAP-Verbindungen. Verwaltet TCP/TLS-Verbindungen,
SNI, Timeouts und das Senden/Empfangen von IMAP-Zeilen.

Konfiguration
IMAPConnectionConfig

Parameter Typ Beschreibung
host String IMAP-Server Hostname
port Int Port (993 für IMAPS, 143 für STARTTLS)
tls Bool Direktes TLS (true) oder Plain+STARTTLS (false)
sniHost String? Server Name Indication für TLS
connectionTimeoutSec Int Verbindungs-Timeout (Standard: 15s)
commandTimeoutSec Int Befehls-Timeout (Standard: 10s)
idleTimeoutSec Int Idle-Timeout für lange Reads (Standard: 10s)

Fehlerbehandlung
Die IMAPError-Enumeration definiert alle möglichen Fehler:

Fehlertyp Beschreibung
.invalidState Ungültiger Verbindungszustand
.connectTimeout Verbindungs-Timeout überschritten
.connectFailed Verbindungsaufbau fehlgeschlagen
.sendFailed Senden fehlgeschlagen
.receiveFailed Empfangen fehlgeschlagen
.networkUnreachable Netzwerk nicht erreichbar
.protocolError IMAP-Protokollfehler
.closed Verbindung geschlossen

Kernmethoden
• open(_ cfg: IMAPConnectionConfig) – Öffnet eine neue IMAP-Verbindung mit TLS

1.2/1.3 Support
• close() – Beendet die Verbindung und räumt Ressourcen auf

AILO Handbuch | Teil 2: Services & Business Logic

Seite 2 | AILO IMAP Implementation v1.0

• upgradeToTLS() – Upgrade auf TLS nach STARTTLS-Befehl
• send(line: String) – Sendet eine IMAP-Zeile (CRLF wird automatisch angehängt)
• receiveLines(untilTag:) – Empfängt Zeilen bis zur Tagged Response (OK/NO/BAD)

IMAPCommands.swift
Stateless Helper für die Ausführung von IMAP-Befehlen. Generiert eindeutige Tags (A1, A2,
...) und formatiert Befehle gemäß RFC 3501.

Session-Befehle
Methode Beschreibung
greeting() Empfängt Server-Begrüßung (* OK IMAP4rev1 ...)
login(user:pass:) Authentifizierung mit Benutzername/Passwort
logout() Beendet die IMAP-Sitzung ordnungsgemäß
startTLS() Initiiert STARTTLS-Upgrade
capabilities() Ruft Server-Capabilities ab

Ordner-Befehle
Methode Beschreibung
listAll() Listet alle verfügbaren Ordner (LIST "" "*")
listSpecialUse() Listet Spezialordner gemäß RFC 6154
select(folder:readOnly:) Wählt Ordner aus (SELECT/EXAMINE)

Fetch-Befehle
Methode Beschreibung
uidSearch(query:) Sucht UIDs nach Kriterien
uidFetchEnvelope(uids:) Holt ENVELOPE + INTERNALDATE + FLAGS
uidFetchEnvelopeWithStructure(uids:) Mit zusätzlichem BODYSTRUCTURE
uidFetchFlags(uids:) Nur FLAGS abrufen
uidFetchBody(uid:partsOrPeek:) Body-Inhalt abrufen
uidStore(uids:flags:action:) Flags setzen/entfernen

IMAPParsers.swift
Parser-Utilities für IMAP-Protokoll-Responses. Konvertiert rohe Antwortzeilen in typisierte
Swift-Strukturen. Unterstützt RFC 2047 für Encoded-Words.

Datenmodelle

EnvelopeRecord
• uid: String – Eindeutige Message-ID
• subject: String – Betreff (RFC 2047 dekodiert)
• from: String – Absender (RFC 2047 dekodiert)
• internalDate: Date? – Server-Empfangsdatum

MessageEnvelope
Erweitertes Envelope-Modell mit vollständigen Adressfeldern:

• to, cc, bcc: [String] – Empfänger-Listen
• messageId: String? – Message-ID Header

AILO Handbuch | Teil 2: Services & Business Logic

Seite 3 | AILO IMAP Implementation v1.0

BodyStructure
Rekursive Struktur für MIME-Parts gemäß RFC 2045:

• single(Part) – Einzelner MIME-Part (text/plain, image/png, etc.)
• multipart(type:subType:parts:) – Multipart-Container (mixed, alternative,

related)

Parser-Methoden
Methode Rückgabe
parseEnvelope(lines:) [EnvelopeRecord] – Parsed ENVELOPE-Felder
parseFlags(lines:) [FlagsRecord] – UIDs mit zugehörigen Flags
parseBodyStructure(line:) BodyStructure – Rekursive MIME-Struktur
parseBodySection(lines:) String? – Body-Inhalt als Text
parseUIDs(line:) [String] – UIDs aus SEARCH-Antwort
parseFetchResponse(data:) FetchResult – Vollständige FETCH-Antwort

TLS/STARTTLS Support
AILO unterstützt beide Verbindungsmodi für sichere E-Mail-Übertragung:

Direkte TLS-Verbindung (IMAPS)
• Standard-Port: 993
• Sofortige TLS-Verschlüsselung beim Verbindungsaufbau
• Konfiguration: tls = true in IMAPConnectionConfig

STARTTLS-Upgrade
• Standard-Port: 143
• Unverschlüsselte Verbindung → STARTTLS-Befehl → TLS-Upgrade
• upgradeToTLS() schließt Plain-Verbindung und öffnet TLS-Tunnel

TLS-Versionen
Unterstützte Protokollversionen: TLS 1.2 (Minimum) bis TLS 1.3 (Maximum), konfiguriert
über sec_protocol_options für maximale Kompatibilität mit Enterprise-Mailservern.

Verwendungsbeispiel
Typischer Workflow für das Abrufen von E-Mail-Headern:

1. IMAPConnection mit IMAPConnectionConfig erstellen
2. open() aufrufen → Verbindung herstellen
3. greeting() → Server-Begrüßung empfangen
4. Optional: startTLS() für STARTTLS-Upgrade
5. login(user:pass:) → Authentifizierung
6. select(folder:) → Ordner auswählen
7. uidSearch() → UIDs abrufen
8. uidFetchEnvelope() → Header laden
9. IMAPParsers.parseEnvelope() → Response parsen
10. logout() + close() → Verbindung beenden

AILO Handbuch | Teil 2: Services & Business Logic

Seite 4 | AILO IMAP Implementation v1.0

Technische Hinweise
• Thread-Safety: IMAPConnection ist NICHT thread-safe. Verwenden Sie eine Instanz

nur von einem seriellen Kontext.
• Async/Await: Alle Netzwerk-Operationen sind async und nutzen Swift Concurrency

(CheckedContinuation).
• RFC 2047: Encoded-Words in Betreff und Absender werden automatisch dekodiert

(UTF-8, ISO-8859-1).
• Literal-Handling: Der Transport materialisiert {n}\r\n-Literal-Blöcke automatisch in

den empfangenen Zeilen.
• Fallback-Encoding: Bei UTF-8-Dekodierungsfehlern wird automatisch ISO-8859-1

versucht.

───────────────────────────────────────
AILO Handbuch – Kapitel 2.3 IMAP Implementation

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 2: Services & Business Logic

Seite 1 | AILO SMTP Implementation v1.0

2.4 SMTP Implementation
Services/Mail/SMTP/ • E-Mail-Versand mit S/MIME Support

Übersicht
Die SMTP-Implementation in AILO ermöglicht den sicheren Versand von E-Mails mit
vollständiger MIME-Unterstützung, optionaler S/MIME-Signierung und einer persistenten
Outbox-Queue mit automatischem Retry-Mechanismus.

Komponente Beschreibung
SMTPAbstractions Protokoll-Definition für austauschbare Clients
SMTPClient NWConnection-basierter SMTP-Client
NIOSMTPClient SwiftNIO-basierte Alternative (optional)
MailSendService Outbox-Queue mit Retry-Logik
SMIMESigningService S/MIME-Signierung für ausgehende Mails

SMTPAbstractions.swift
Definiert das SMTPClientProtocol zur Entkopplung des MailSendService von konkreten
SMTP-Client-Implementierungen. Ermöglicht den Austausch zwischen NWConnection- und
SwiftNIO-basierten Clients.

SMTPClientProtocol
• testConnection(_ config: SMTPConfig) → Result<Void, SMTPError>
• send(_ message: MailMessage, using config: SMTPConfig) → DeliveryResult

SMTPConfig
Parameter Typ Beschreibung
host String SMTP-Server Hostname
port UInt16 Port (587 für STARTTLS, 465 für SSL)
encryption Encryption .none, .startTLS, .sslTLS
username String? Benutzername für Authentifizierung
password String? Passwort für Authentifizierung
heloName String HELO/EHLO Domain-Name
connectionTimeoutSec Int Verbindungs-Timeout
commandTimeoutSec Int Befehls-Timeout

SMTPClient.swift
Implementiert das SMTPClientProtocol mit Apples Network.framework (NWConnection).
Unterstützt TLS/STARTTLS, PLAIN/LOGIN-Authentifizierung und vollständiges RFC
5321/5322-konformes Message-Building.

Fehlerbehandlung (SMTPError)
Fehlertyp Beschreibung
invalidState Ungültiger Verbindungszustand
connectTimeout Verbindungs-Timeout überschritten
connectFailed Verbindungsaufbau fehlgeschlagen

AILO Handbuch | Teil 2: Services & Business Logic

Seite 2 | AILO SMTP Implementation v1.0

Fehlertyp Beschreibung
greetingFailed Server-Begrüßung ungültig
startTLSRejected Server hat STARTTLS abgelehnt
authRequired Authentifizierung erforderlich
authFailed Authentifizierung fehlgeschlagen
commandFailed SMTP-Befehl fehlgeschlagen (Code + Message)
sendFailed Senden fehlgeschlagen
closed Verbindung geschlossen

SMTP-Workflow
1. Verbindung öffnen (open) → TCP/TLS-Handshake
2. Server-Greeting empfangen (220 OK)
3. EHLO senden → Capabilities abrufen
4. Optional: STARTTLS → TLS-Upgrade
5. AUTH LOGIN/PLAIN → Authentifizierung
6. MAIL FROM → Absender setzen
7. RCPT TO → Empfänger setzen (To, Cc, Bcc)
8. DATA → RFC 5322 Message übertragen
9. QUIT → Verbindung beenden

MailSendService.swift
Verwaltet die Outbox-Queue für ausgehende E-Mails. Bietet asynchronen Versand mit
automatischem Retry bei Fehlern, Backoff-Strategien und persistente Speicherung über
OutboxDAO.

OutboxItem
Feld Typ Beschreibung
id UUID Eindeutige Item-ID
accountId UUID Zugehöriger Mail-Account
createdAt Date Erstellungszeitpunkt
lastAttemptAt Date? Letzter Versuch
attempts Int Anzahl Versuche
status OutboxStatus pending, sending, sent, failed, cancelled
lastError String? Letzter Fehlertext
draft MailDraft E-Mail-Inhalt

Public API
• queue(_ draft:accountId:) – Fügt Draft zur Outbox hinzu
• sendDraft(_ draft:accountId:) – Validiert, queued und triggert Versand
• retry(_ id:accountId:) – Setzt fehlgeschlagenes Item zurück auf pending
• processNext(accountId:) – Verarbeitet das nächste Item (One-Shot)
• processAll(accountId:) – Verarbeitet Queue bis leer/Fehler
• publisherOutbox(accountId:) – Combine Publisher für Outbox-Änderungen

Retry-Mechanismus
• Exponentielles Backoff bei Fehlern
• Minimum 30 Sekunden zwischen Versuchen
• Erfolge/Fehler werden in RetryPolicy protokolliert
• MailMetrics trackt Success/Failure-Raten pro Host

AILO Handbuch | Teil 2: Services & Business Logic

Seite 3 | AILO SMTP Implementation v1.0

S/MIME Signing Support
AILO unterstützt die digitale Signierung ausgehender E-Mails mittels S/MIME (RFC 5751).
Die Signatur wird über SMIMESigningService erstellt und als multipart/signed-Nachricht
gesendet.

SMIMESigningService
• signMessage(mimeContent:certificateId:) → Result<Data, SigningError>
• canSign(certificateId:) → Bool – Prüft ob Zertifikat verfügbar

Plattform-spezifische Implementierung
Plattform Methode
macOS CMSEncoder API für native CMS/PKCS#7-Signierung
iOS Manuelle CMS-Konstruktion mit Security Framework +

CommonCrypto

Signierungsprozess
10. Identity (Zertifikat + Private Key) aus Keychain laden
11. Inner MIME Content erstellen (Body ohne Outer Headers)
12. SHA-256 Hash des Contents berechnen
13. Signatur mit Private Key erstellen (PKCS#7/CMS)
14. multipart/signed Message zusammenbauen
15. application/pkcs7-signature Part anhängen

SigningError
• .certificateNotFound – Zertifikat nicht im Keychain
• .certificateError – Zertifikat konnte nicht geladen werden
• .privateKeyError – Private Key nicht verfügbar

MIME Message Building
Der SMTPClient baut RFC 5322-konforme Messages mit vollständiger MIME-Unterstützung
für Text, HTML, Multipart und Attachments.

Unterstützte Content-Types
• text/plain – Reiner Text (UTF-8)
• text/html – HTML-Inhalt
• multipart/alternative – Text + HTML kombiniert
• multipart/mixed – Mit Attachments
• multipart/signed – S/MIME-signiert

RFC-Konformität
• RFC 5321: SMTP-Protokoll, Dot-Stuffing
• RFC 5322: Internet Message Format
• RFC 2047: Encoded-Words für Header (Subject, From)
• RFC 2045: MIME Content-Type und Boundaries
• RFC 5751: S/MIME Message Specification

AILO Handbuch | Teil 2: Services & Business Logic

Seite 4 | AILO SMTP Implementation v1.0

Technische Hinweise
• Async/Await: Alle Netzwerk-Operationen nutzen Swift Concurrency.
• Worker-Queues: Jeder Account hat eine dedizierte DispatchQueue für Outbox-

Verarbeitung.
• Combine Integration: CurrentValueSubject publiziert Outbox-Änderungen für UI-

Updates.
• Line Endings: CRLF (\r\n) für SMTP-Übertragung, LF für S/MIME-Hash-

Berechnung.
• Dot-Stuffing: Zeilen mit führendem Punkt werden gemäß RFC 5321 escaped.

───────────────────────────────────────
AILO Handbuch – Kapitel 2.4 SMTP Implementation

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 2: Services & Business Logic

Seite 1 | AILO Pre-Prompt Management v1.0

2.5 Pre-Prompt Management
Helpers/Utilities/ • Hierarchisches Prompt-Katalog-System

Übersicht
Das Pre-Prompt Management System in AILO bietet eine hierarchische Struktur zur
Organisation, Verwaltung und Kombination von KI-Prompts. Es unterstützt verschachtelte
Ordner, wiederverwendbare Presets, Rezept-Kombinationen und Kochbücher für komplexe
Prompt-Workflows.

Komponente Beschreibung
PrePromptCatalogManager Singleton Manager für alle Katalog-Operationen
PrePromptMenuItem Hierarchisches Menü-Item (Ordner oder Preset-Referenz)
AIPrePromptPreset Einzelner Pre-Prompt mit Text und Metadaten
PrePromptRecipe Kombiniert mehrere Presets zu einem Workflow
Cookbook Sammlung von Rezepten in Kapiteln
RecipeMenuItem Hierarchische Struktur innerhalb eines Kochbuchs

PrePromptCatalogManager
Der zentrale Singleton-Manager für das gesamte Pre-Prompt-System. Verwaltet
Menüstruktur, Presets, Rezepte und Kochbücher. Implementiert als ObservableObject für
SwiftUI-Integration.

Published Properties
Property Typ Beschreibung
menuItems [PrePromptMenuItem] Hierarchische Menüstruktur
presets [AIPrePromptPreset] Alle Pre-Prompt-Inhalte
recipes [PrePromptRecipe] Kombinierte Rezepte
cookbooks [Cookbook] Rezept-Sammlungen
recipeMenuItems [RecipeMenuItem] Kochbuch-Strukturen

Menu Item Operations
• addMenuItem(_:) – Fügt neues Menu-Item hinzu
• updateMenuItem(_:) – Aktualisiert bestehendes Item
• deleteMenuItem(_:) – Löscht Item mit allen Descendants
• moveMenuItem(_:to:) – Verschiebt Item zu neuem Parent
• reorderItems(in:from:to:) – Sortiert Items innerhalb Parent

Preset Operations
• addPreset(_:in:) – Erstellt Preset + Menu-Item
• updatePreset(_:) – Aktualisiert Preset + Menu-Item
• deletePreset(_:) – Entfernt Preset + Menu-Item

Query Helpers
• children(of:) – Kinder eines Parents (nil = Root)
• path(to:) – Breadcrumb-Pfad zu einem Item
• preset(withID:) – Preset anhand ID laden

AILO Handbuch | Teil 2: Services & Business Logic

Seite 2 | AILO Pre-Prompt Management v1.0

• presets(in:) – Alle Presets in Ordner (rekursiv)

PrePromptMenuItem
Repräsentiert ein Element in der hierarchischen Menüstruktur. Kann entweder ein Ordner
(Container) oder eine Referenz auf ein Preset sein. Unterstützt unbegrenzte
Verschachtelungstiefe.

Eigenschaften
Feld Typ Beschreibung
id UUID Eindeutige Item-ID
parentID UUID? Parent-ID (nil = Root-Level)
name String Anzeigename im Menü
icon String Emoji-Icon
keywords String Semikolon-getrennte Schlagwörter
sortOrder Int Sortierreihenfolge
presetID UUID? Verweis auf Preset (nil = Ordner)

Computed Properties
• isFolder: Bool – true wenn presetID == nil
• isPreset: Bool – true wenn presetID != nil
• keywordPairs: [(key, value)] – Geparste Key-Value-Paare

Factory Methods
• PrePromptMenuItem.folder(name:icon:keywords:parentID:sortOrder:)
• PrePromptMenuItem.preset(name:icon:keywords:parentID:sortOrder:presetID:)

AIPrePromptPreset
Enthält den eigentlichen Pre-Prompt-Text sowie Metadaten. Wird über PrePromptMenuItem
im Menü referenziert und kann in Rezepten kombiniert werden.

Eigenschaften
Feld Typ Beschreibung
id UUID Eindeutige Preset-ID
name String Anzeigename
text String Der eigentliche Prompt-Text
icon String Emoji-Icon
keywords String Variablen-Definitionen (key:value;...)
isDefault Bool Standard-Preset markiert

PrePromptRecipe
Ein Rezept kombiniert mehrere Presets und Ordner zu einem komplexen Prompt-Workflow.
Kategorien werden zu Überschriften, Presets liefern den Inhalt. Keywords werden
hierarchisch vererbt und können überschrieben werden.

Eigenschaften

AILO Handbuch | Teil 2: Services & Business Logic

Seite 3 | AILO Pre-Prompt Management v1.0

Feld Typ Beschreibung
id UUID Eindeutige Rezept-ID
name String Rezept-Name
icon String Emoji-Icon
keywords String Rezept-spezifische Keywords
elementIDs [UUID] Geordnete Liste der Elemente
separator String Trennzeichen zwischen Elementen

Kernmethoden
• generatePrompt(from:presets:) → String – Kombinierter Prompt-Text
• collectKeywords(from:presets:) → [(key, value)] – Alle Keywords

Cookbook & RecipeMenuItem
Ein Cookbook ist eine Sammlung von Rezepten, organisiert in Kapiteln. RecipeMenuItem
bildet die hierarchische Struktur innerhalb eines Kochbuchs ab – analog zu
PrePromptMenuItem für den Preset-Katalog.

Cookbook-Eigenschaften
• id: UUID – Eindeutige Kochbuch-ID
• name: String – Kochbuch-Name
• icon: String – Emoji-Icon
• keywords: String – Kochbuch-Keywords
• sortOrder: Int – Sortierreihenfolge

RecipeMenuItem
Kann ein Kapitel (isChapter) oder eine Rezept-Referenz (recipeID) sein:

• cookbookID: UUID – Zugehöriges Kochbuch
• parentID: UUID? – Parent-Kapitel
• recipeID: UUID? – Verweis auf Rezept (nil = Kapitel)

Persistierung
Alle Daten werden über UserDefaults als JSON persistiert. Bei der ersten Initialisierung
werden Standard-Kategorien und Demo-Presets erstellt.

UserDefaults Keys
Key Inhalt
kPrePromptMenuKey Hierarchische Menüstruktur
kAIPresetsKey Alle Pre-Prompt-Presets
kPrePromptRecipesKey Rezept-Definitionen
kCookbooksKey Kochbuch-Metadaten
kRecipeMenuKey Kochbuch-Strukturen
kCatalogInitializedKey First-Launch-Flag

Export/Import

AILO Handbuch | Teil 2: Services & Business Logic

Seite 4 | AILO Pre-Prompt Management v1.0

Der gesamte Katalog kann als JSON exportiert und importiert werden. Dies ermöglicht
Backup, Sharing und Migration zwischen Geräten.

CatalogExport-Struktur
• version: Int – Schema-Version (aktuell: 1)
• exportDate: Date – Zeitpunkt des Exports
• menuItems, presets, recipes, cookbooks, recipeMenuItems

Methoden
• exportCatalog() → Data? – JSON-Export
• importCatalog(from:) → Bool – JSON-Import mit Validierung

Standard-Kategorien
Bei Erstinstallation werden folgende Kategorien automatisch erstellt:

Icon Kategorie Beschreibung
📧 Mail Haupt-Kategorie für E-Mail-Prompts
↩ Reply Antwort-Vorlagen (unter Mail)
↪ Forward Weiterleitungs-Vorlagen (unter Mail)
🔍 Analyze Analyse-Prompts (unter Mail)
📝 Notes Notizen und Protokolle
💬 General Allgemeine Prompts

Migration
Das System unterstützt automatische Migration von Legacy-Daten:

• migrateFromLegacy(): Verschiebt bestehende Presets in "Migriert"-Ordner
• migrateRecipesToCookbook(): Erstellt Standard-Kochbuch für lose Rezepte

Technische Hinweise
• ObservableObject: @Published Properties ermöglichen reaktive SwiftUI-Updates
• Codable: Alle Modelle sind JSON-serialisierbar für Persistenz und Export
• Sendable: Thread-sichere Modelle für Swift Concurrency
• Keywords: Format "key:value;key2:value2" für Template-Interpolation
• Hierarchie: Unbegrenzte Verschachtelungstiefe über parentID-Referenzen

───────────────────────────────────────
AILO Handbuch – Kapitel 2.5 Pre-Prompt Management

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 2: Services & Business Logic

Seite 1 | AILO Audio & Speech v1.0

2.6 Audio & Speech
Views/Sprechen/ • Live-Transkription mit AVFoundation & Speech Framework

Übersicht
Das Audio & Speech System in AILO ermöglicht Sprachaufnahmen mit Live-Transkription.
Es nutzt AVFoundation für Audio-Recording und das Speech Framework für Echtzeit-
Spracherkennung mit automatischer Chunk-basierter Verarbeitung und Silence Detection.

Komponente Beschreibung
AudioRecorder AVFoundation-basierte Audio-Aufnahme mit Pegel-Metering
LiveTranscriber Echtzeit-Spracherkennung mit SFSpeechRecognizer
RecordingState ObservableObject für UI-State-Management
SprechenView SwiftUI-View für Aufnahme und Transkription

AudioRecorder
Die AudioRecorder-Klasse kapselt AVAudioRecorder für hochwertige Audio-Aufnahmen im
m4a-Format. Implementiert als ObservableObject mit AVAudioRecorderDelegate für SwiftUI-
Integration.

Published Properties
Property Typ Beschreibung
isRecording Bool Aufnahme aktiv
isPaused Bool Aufnahme pausiert
elapsed TimeInterval Verstrichene Zeit in Sekunden
level Float Aktueller Audiopegel (dB)

Methoden
• startRecording(to:sensitivity:) – Startet Aufnahme mit Mikrofon-Empfindlichkeit
• pause() – Pausiert die laufende Aufnahme
• resume() – Setzt pausierte Aufnahme fort
• stop(completion:) – Beendet Aufnahme mit Callback für URL

Audio-Einstellungen
Parameter Wert
Format MPEG4 AAC (kAudioFormatMPEG4AAC)
Sample Rate 44.100 Hz
Channels 1 (Mono)
Bitrate 128.000 bps
Quality AVAudioQuality.high
Output .m4a Datei

AVAudioSession-Konfiguration
• Category: .playAndRecord
• Mode: .default
• Options: .defaultToSpeaker
• Input Gain: Einstellbar über Mikrofon-Empfindlichkeit (0.0–1.0)

AILO Handbuch | Teil 2: Services & Business Logic

Seite 2 | AILO Audio & Speech v1.0

LiveTranscriber
Die LiveTranscriber-Klasse implementiert Echtzeit-Spracherkennung mit dem Speech
Framework. Nutzt AVAudioEngine für Audio-Streaming und SFSpeechRecognizer für die
Transkription mit automatischer Chunk-Verarbeitung.

Published Properties
Property Typ Beschreibung
combinedText String Gesamter transkribierter Text (alle Chunks)
currentChunk String Aktueller, noch nicht finalisierter Chunk

Konfigurationsoptionen
Option Typ Beschreibung
localeCode String Sprache ("auto" oder Locale-ID)
partialResultsEnabled Bool Zwischenergebnisse aktiviert
onDeviceOnly Bool Nur On-Device Recognition
amplitudeThreshold Float Schwellwert für Stille-Erkennung
micSensitivity Double Mikrofon-Empfindlichkeit (0.0–1.0)

Methoden
• applyConfig(...) – Konfiguration setzen und Threshold berechnen
• start() – Startet Engine und Spracherkennung
• stop() – Beendet Recognition und committed letzten Chunk
• reset() – Setzt alle States zurück
• previewText() → String – Kombiniert combinedText + aktuelles Delta

Silence Detection
Der LiveTranscriber implementiert automatische Stille-Erkennung zur intelligenten Chunk-
Segmentierung. Dies ermöglicht natürliche Pausen im Sprachfluss und vermeidet übergroße
Transkriptionsblöcke.

Funktionsweise
1. Audio-Buffer wird über AVAudioEngine empfangen (1024 Frames)
2. RMS-Amplitude wird per vDSP_measqv berechnet
3. Vergleich mit amplitudeThreshold (konfigurierbar)
4. Bei Stille: Timer startet (silenceHold = 0.8s)
5. Nach Ablauf: commitCurrentChunk() wird aufgerufen

Parameter
Parameter Wert Beschreibung
silenceHold 0.8 Sekunden Haltezeit bevor Chunk finalisiert
minThreshold 0.003 (~-50 dB) Hohe Empfindlichkeit
maxThreshold 0.02 (~-34 dB) Niedrige Empfindlichkeit
bufferSize 1024 Frames Audio-Buffer-Größe

Chunk-basierte Transkription

AILO Handbuch | Teil 2: Services & Business Logic

Seite 3 | AILO Audio & Speech v1.0

Die Transkription erfolgt in Chunks, die bei Sprechpausen automatisch finalisiert werden.
Dies ermöglicht flüssige Echtzeit-Anzeige und verhindert Duplikate.

Deduplizierung
Die commitCurrentChunk()-Methode implementiert mehrere Deduplizierungs-Strategien:

• Delta-Berechnung: Nur neue Textteile werden extrahiert
• lastCommitted-Vergleich: Identische Chunks werden übersprungen
• Suffix-Check: Prüfung ob Text bereits am Ende vorhanden
• Line-Check: Vergleich mit letzter Zeile in combinedText

On-Device Recognition
AILO unterstützt On-Device Spracherkennung für datenschutzsensible Anwendungen. Die
Audiodaten verlassen das Gerät nicht, wenn dieser Modus aktiviert ist.

Voraussetzungen
• iOS 13.0+ erforderlich
• Prüfung via recognizer.supportsOnDeviceRecognition
• Sprachpaket muss heruntergeladen sein
• Fallback auf Server-Recognition wenn nicht verfügbar

Aktivierung
• UserDefaults Key: config.speechOnDeviceOnly
• Request Property: requiresOnDeviceRecognition = true

Konfiguration
Die Spracheinstellungen werden über UserDefaults persistiert und in der Settings-View
konfiguriert.

UserDefaults Keys
Key Beschreibung
config.speech.lang Sprach-Code (z.B. "de-DE", "en-US")
config.speechOnDeviceOnly On-Device Recognition aktiviert
config.speechPartial Zwischenergebnisse aktiviert
config.micSensitivity Mikrofon-Empfindlichkeit (0.0–1.0)

SprechenView
Die SwiftUI-View integriert AudioRecorder und LiveTranscriber für eine nahtlose
Benutzeroberfläche mit Pegel-Anzeige, Live-Transkript und Speicherfunktion.

UI-Komponenten
• Titel-Eingabe: TextField für optionalen Eintragstitel
• Level Meter: Capsule-basierte Pegel-Anzeige (grün/gelb/rot)
• Zeitanzeige: Verstrichene Aufnahmezeit (mm:ss)
• Steuerung: Start/Stop/Pause-Buttons

AILO Handbuch | Teil 2: Services & Business Logic

Seite 4 | AILO Audio & Speech v1.0

• Transkript: ScrollView mit Auto-Scroll zum Ende
• Speichern: Button zum Sichern als Log-Eintrag

State-Management
• @StateObject audio: AudioRecorder-Instanz
• @StateObject live: LiveTranscriber-Instanz
• @State transcript: Finalisierter Transkript-Text
• @EnvironmentObject store: DataStore für Log-Speicherung

Technische Hinweise
• Berechtigungen: Mikrofon + Spracherkennung müssen genehmigt sein
• Delegate: AVAudioRecorderDelegate für Finish-Callback
• RunLoop: Timer wird mit .common Mode registriert
• Accelerate: vDSP für performante RMS-Berechnung
• Memory: [weak self] in allen Closures zur Vermeidung von Retain Cycles
• Session: Deaktivierung mit .notifyOthersOnDeactivation nach Aufnahme

───────────────────────────────────────
AILO Handbuch – Kapitel 2.6 Audio & Speech

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 2: Services & Business Logic

Seite 1 | AILO Sicherheit v1.0

2.7 Sicherheit
Services/Security/ & Helpers/Security/ • Keychain, S/MIME & Verschlüsselung

Übersicht
Das Sicherheits-System in AILO gewährleistet den sicheren Umgang mit sensiblen Daten.
Es nutzt den iOS/macOS Keychain für Passwörter und Zertifikate, implementiert S/MIME-
Signierung für E-Mails und stellt sicher, dass keine Credentials im Klartext gespeichert
werden.

Komponente Beschreibung
KeychainService Passwort- und Token-Speicherung im System-Keychain
KeychainCertificateService S/MIME-Zertifikatsverwaltung und P12-Import
SMIMESigningService Digitale Signierung ausgehender E-Mails
SMIMEVerificationService Signatur-Verifizierung eingehender E-Mails

KeychainService
Der KeychainService ist ein leichtgewichtiger Wrapper um das iOS/macOS Security
Framework. Er speichert sensible Strings wie Passwörter und OAuth-Tokens sicher im
System-Keychain.

Basis-API
Methode Beschreibung
set(_:for:) Speichert String-Wert für Key → Bool
get(_:) Liest String-Wert für Key → String?
delete(_:) Löscht Keychain-Eintrag → Bool

Passwort-Typen (PasswordKind)
• .recv – IMAP-Empfangspasswort (Prefix: mail.recv)
• .smtp – SMTP-Sendepasswort (Prefix: mail.smtp)

Token-Typen (TokenKind)
• .recv – OAuth-Token für IMAP (Prefix: mail.oauth.recv)
• .smtp – OAuth-Token für SMTP (Prefix: mail.oauth.smtp)

Convenience-API
• setPassword(_:kind:accountId:) – Passwort für Account speichern
• password(kind:accountId:) → String? – Passwort abrufen
• setToken(_:kind:accountId:) – OAuth-Token speichern
• token(kind:accountId:) → String? – OAuth-Token abrufen

Keychain-Attribute
Attribut Wert
kSecClass kSecClassGenericPassword
kSecAttrService Bundle Identifier (App-spezifisch)

AILO Handbuch | Teil 2: Services & Business Logic

Seite 2 | AILO Sicherheit v1.0

Attribut Wert
kSecAttrAccount Zusammengesetzter Key (kind.accountId)
kSecAttrAccessible kSecAttrAccessibleAfterFirstUnlock

KeychainCertificateService
Der KeychainCertificateService verwaltet S/MIME-Zertifikate im System-Schlüsselbund. Er
ermöglicht das Auflisten, Importieren und Löschen von Identities (Zertifikat + Private Key).

Kernmethoden
• listSigningCertificates() → [SigningCertificateInfo]
• loadIdentity(certificateId:) → SecIdentity?
• importP12(data:password:) → Result<SigningCertificateInfo, P12ImportError>
• deleteCertificate(certificateId:) → Bool

SigningCertificateInfo
Feld Typ Beschreibung
id String Base64-encodierte Persistent Reference
displayName String Subject Summary des Zertifikats
email String? E-Mail-Adresse aus Zertifikat
expiresAt Date? Ablaufdatum (falls extrahierbar)
identity SecIdentity Referenz auf Keychain-Identity

P12-Import-Prozess
1. P12-Datei mit SecPKCS12Import und Passwort öffnen
2. Identity (kSecImportItemIdentity) extrahieren
3. Zertifikat via SecIdentityCopyCertificate erhalten
4. Private Key via SecIdentityCopyPrivateKey erhalten
5. Zertifikat in Keychain speichern (kSecClassCertificate)
6. Private Key in Keychain speichern (kSecClassKey)

P12ImportError
Fehlertyp Beschreibung
.wrongPassword Falsches Passwort für P12-Datei
.invalidFile Ungültiges P12/PFX-Dateiformat
.noIdentityFound Keine Identity in P12 gefunden
.certificateError Zertifikat konnte nicht extrahiert werden
.privateKeyError Private Key konnte nicht extrahiert werden
.keychainError(OSStatus) Keychain-Operation fehlgeschlagen

SMIMESigningService
Der SMIMESigningService signiert ausgehende E-Mails digital gemäß RFC 5751 (S/MIME).
Die Signatur garantiert Authentizität und Integrität der Nachricht.

Public API
• signMessage(mimeContent:certificateId:) → Result<Data, SigningError>
• canSign(certificateId:) → Bool – Prüft Zertifikat-Verfügbarkeit

AILO Handbuch | Teil 2: Services & Business Logic

Seite 3 | AILO Sicherheit v1.0

Plattform-Implementierungen
Plattform Implementierung
macOS CMSEncoder API für native CMS/PKCS#7-Signierung
iOS Manuelle CMS-Konstruktion mit Security Framework +

CommonCrypto

macOS: CMSEncoder-Workflow
7. CMSEncoderCreate() – Encoder initialisieren
8. CMSEncoderAddSigners() – Identity hinzufügen
9. CMSEncoderAddSupportingCerts() – Zertifikat-Kette
10. CMSEncoderSetHasDetachedContent(true) – Detached Signature
11. CMSEncoderAddSignedAttributes(.attrSigningTime)
12. CMSEncoderUpdateContent() – MIME-Content übergeben
13. CMSEncoderCopyEncodedContent() – Signatur erhalten

iOS: Manuelle CMS-Konstruktion
14. Schlüssel-Algorithmus bestimmen (RSA/EC)
15. SHA-256 Digest des MIME-Contents berechnen (CommonCrypto)
16. SignerInfo ASN.1-Struktur aufbauen
17. Signatur mit SecKeyCreateSignature erstellen
18. multipart/signed MIME-Nachricht assemblieren

SigningError
• .certificateNotFound – Zertifikat nicht im Keychain
• .certificateError – Zertifikat konnte nicht geladen werden
• .privateKeyError – Private Key nicht verfügbar
• .signingFailed(String) – Allgemeiner Signierfehler

S/MIME Signaturformat
Die signierte Nachricht wird als multipart/signed gemäß RFC 5751 aufgebaut. Die Signatur
ist "detached", d.h. der Original-Content bleibt lesbar.

MIME-Struktur
• Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha-

256
• Part 1: Original MIME-Content (text/plain, text/html, etc.)
• Part 2: application/pkcs7-signature (Base64-encoded)

Unterstützte Algorithmen
Schlüsseltyp Signatur-Algorithmus Hash-Algorithmus
RSA rsaSignatureMessagePKCS1v15SHA256 SHA-256
EC (P-256) ecdsaSignatureMessageX962SHA256 SHA-256

Sicherheitsprinzipien
AILO folgt etablierten Sicherheitsprinzipien für den Umgang mit sensiblen Daten:

AILO Handbuch | Teil 2: Services & Business Logic

Seite 4 | AILO Sicherheit v1.0

Daten im Ruhezustand
• Passwörter: Nur im System-Keychain, nie in UserDefaults oder Dateien
• API-Keys: Im Keychain mit kSecAttrAccessibleAfterFirstUnlock
• Zertifikate: Im System-Schlüsselbund mit

kSecAttrAccessibleWhenUnlockedThisDeviceOnly
• Private Keys: Nur über SecIdentity-Referenz, nie als Raw-Data exportiert

Daten in Übertragung
• IMAP/SMTP: TLS 1.2+ erzwungen (STARTTLS oder IMAPS/SMTPS)
• API-Calls: HTTPS mit Certificate Pinning (optional)
• E-Mail-Content: Optional S/MIME-signiert für Authentizität

Zugriffskontrolle
• App-Sandbox: Strikte iOS/macOS Sandbox-Isolation
• Keychain-Scoping: Service = Bundle-ID für App-spezifische Einträge
• Keine Cloud-Sync: Sensible Daten verlassen das Gerät nicht

Technische Hinweise
• Singleton Pattern: Beide Services als .shared für globalen Zugriff
• OSStatus-Handling: Alle Security-Funktionen prüfen Return-Codes
• Conditional Compilation: #if os(macOS) für plattformspezifischen Code
• Duplicate Handling: errSecDuplicateItem wird als Erfolg gewertet
• Memory Safety: SecKey/SecCertificate-Referenzen werden nicht kopiert
• Lokalisierung: Alle Fehlermeldungen über String(localized:)

───────────────────────────────────────
AILO Handbuch – Kapitel 2.7 Sicherheit

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 3: Data Access Layer

Seite 1 | AILO Database Schema v1.0

3.1 Database Schema
Database/Schema/ • SQLite Tabellen-Definitionen & Migrationen

Übersicht
Das AILO Database Schema definiert die SQLite-Tabellenstruktur für E-Mail-Persistenz. Es
umfasst Tabellen für Accounts, Ordner, Nachrichten, Anhänge und die Outbox-Queue. Das
Schema unterstützt versionierte Migrationen und wird über PRAGMA user_version
verwaltet.

Eigenschaft Wert
Aktuelle Version 5 (MailSchema.currentVersion)
Datenbank-Engine SQLite3 (iOS/macOS native)
Datei MailSchema.swift
Pfad Database/Schema/

Tabellen-Übersicht
Tabelle Beschreibung
accounts E-Mail-Account-Konfigurationen
folders IMAP-Ordner pro Account
message_header E-Mail-Header (Hot Path, häufig gelesen)
message_body E-Mail-Body (Lazy Loading)
attachment Anhänge mit Metadaten und Blob-Speicher
outbox Ausgehende E-Mails (Queue)
mime_parts Strukturierte MIME-Parts
render_cache Gerenderte HTML/Text-Versionen
blob_meta Blob-Deduplizierung und Reference Counting

accounts
Speichert E-Mail-Account-Konfigurationen. Passwörter werden NICHT hier gespeichert,
sondern im Keychain.

Spalte Typ Beschreibung
id TEXT PK UUID des Accounts
display_name TEXT Anzeigename
email_address TEXT E-Mail-Adresse
host_imap TEXT IMAP-Server Hostname
host_smtp TEXT SMTP-Server Hostname
created_at INTEGER Erstellungsdatum (Epoch)
updated_at INTEGER Änderungsdatum (Epoch)
signing_enabled INTEGER S/MIME-Signierung aktiviert (v5)
signing_cert_id TEXT Keychain-Zertifikat-ID (v5)

folders
IMAP-Ordner mit Special-Use-Flags und Attributen. Composite Primary Key aus account_id
+ name.

Spalte Typ Beschreibung
account_id TEXT PK Zugehöriger Account

AILO Handbuch | Teil 3: Data Access Layer

Seite 2 | AILO Database Schema v1.0

Spalte Typ Beschreibung
name TEXT PK Ordnername (z.B. "INBOX")
special_use TEXT Spezialverwendung (inbox, sent, drafts, trash, spam)
delimiter TEXT Hierarchie-Trennzeichen (z.B. "/")
attributes TEXT IMAP-Flags (\Noselect, \HasNoChildren, etc.)

message_header
E-Mail-Header für schnellen Listen-Zugriff. Hot Path – häufig gelesen, selten geschrieben.
Index auf (account_id, folder, date DESC).

Spalte Typ Beschreibung
account_id TEXT PK Zugehöriger Account
folder TEXT PK Ordnername
uid TEXT PK IMAP UID (eindeutig im Ordner)
from_addr TEXT Absender-Adresse
subject TEXT Betreff
date INTEGER Datum (Epoch Sekunden)
flags TEXT IMAP-Flags (\Seen, \Flagged, etc.)
has_attachments INTEGER Hat Anhänge (0/1)

message_body
E-Mail-Body mit Text/HTML-Inhalt. Lazy Loading – wird erst bei Detailansicht geladen. Seit
v3 mit raw_body für Forensik.

Spalte Typ Beschreibung
account_id TEXT PK Zugehöriger Account
folder TEXT PK Ordnername
uid TEXT PK IMAP UID
text_body TEXT Plain-Text Version
html_body TEXT HTML Version
has_attachments INTEGER Hat Anhänge (0/1)
raw_body TEXT Roher MIME-Body (v3)
content_type TEXT MIME Content-Type (v2)
charset TEXT Zeichensatz (v2)
transfer_encoding TEXT Transfer-Encoding (v2)
is_multipart INTEGER Multipart-Nachricht (v2)
raw_size INTEGER Rohe Größe in Bytes (v2)
processed_at INTEGER Verarbeitungszeitpunkt (v2)

attachment
Anhänge mit Metadaten, Blob-Speicher und Deduplizierung. Unterstützt Inline-Attachments
(CID) und externe Dateipfade.

Spalte Typ Beschreibung
account_id TEXT PK Zugehöriger Account
folder TEXT PK Ordnername
uid TEXT PK IMAP UID
part_id TEXT PK MIME Part-ID (z.B. "1.2")
filename TEXT Dateiname
mime_type TEXT MIME-Typ
size_bytes INTEGER Größe in Bytes
data BLOB Binärdaten (optional)
content_id TEXT CID für Inline-Attachments (v2)
is_inline INTEGER Inline-Attachment (v2)

AILO Handbuch | Teil 3: Data Access Layer

Seite 3 | AILO Database Schema v1.0

Spalte Typ Beschreibung
file_path TEXT Externer Dateipfad (v2)
checksum TEXT SHA256 für Deduplizierung (v2)

outbox
Queue für ausgehende E-Mails mit Retry-Logik. Status: pending, sending, sent, failed,
cancelled.

Spalte Typ Beschreibung
id TEXT PK UUID der Outbox-Nachricht
account_id TEXT Absender-Account
created_at INTEGER Erstellungszeitpunkt
last_attempt_at INTEGER Letzter Versuch
attempts INTEGER Anzahl Versuche
status TEXT Status (pending/sending/sent/failed)
last_error TEXT Letzter Fehlertext
from_addr TEXT Absender
to_addr TEXT Empfänger (kommagetrennt)
cc_addr TEXT CC-Empfänger
bcc_addr TEXT BCC-Empfänger
subject TEXT Betreff
text_body TEXT Plain-Text Body
html_body TEXT HTML Body
attachments_json TEXT Anhänge als JSON (v4)

Blob Storage Tabellen
Zusätzliche Tabellen für MIME-Strukturierung, Render-Cache und Blob-Deduplizierung.

mime_parts
• id: TEXT PRIMARY KEY
• message_id, part_number: Referenz zur Nachricht
• content_type, content_subtype: MIME-Typ
• is_attachment, is_inline: Attachment-Flags
• parent_part_number: Hierarchie für Multipart

render_cache
• message_id: TEXT PRIMARY KEY
• html_rendered, text_rendered: Gerenderte Versionen
• generated_at, generator_version: Cache-Invalidierung

blob_meta
• blob_id: TEXT PRIMARY KEY
• hash_sha256: SHA256-Hash für Deduplizierung
• reference_count: Anzahl Referenzen (Reference Counting)
• size_bytes, created_at, last_accessed: Metadaten

Indizes

AILO Handbuch | Teil 3: Data Access Layer

Seite 4 | AILO Database Schema v1.0

Index Spalten / Zweck
idx_header_date (account_id, folder, date DESC) – Sortierte Listen
idx_outbox_pending (status, created_at) – Pending-Queue-Abfrage
idx_attachment_checksum (checksum) WHERE NOT NULL – Deduplizierung
idx_body_processed_at (processed_at) WHERE NOT NULL – Migration-Tracking

Schema-Migration
Das Schema unterstützt automatische Migrationen über PRAGMA user_version. Jede
Version fügt neue Spalten oder Tabellen hinzu.

Versions-Historie
Version Änderungen

v1 Initiales Schema mit allen Basistabellen
v2 Enhanced metadata: content_type, charset, transfer_encoding, is_multipart, checksum,

is_inline
v3 raw_body für Forensik, .eml-Export, Phishing-Detection
v4 attachments_json in outbox für ausgehende Anhänge
v5 signing_enabled, signing_cert_id für S/MIME-Signierung

Migration-API
• createStatements(for:) → [String] – DDL für Version
• migrationSteps(from:to:) → [[String]] – Schrittweise Migrationen
• migrateIfNeeded(readUserVersion:exec:writeUserVersion:) – Automatische

Migration

Entity Models
Leichtgewichtige Swift-Structs für type-safe Datenzugriff. Alle Entities sind Sendable und
Equatable.

• AccountEntity – id, displayName, emailAddress, hostIMAP, hostSMTP
• FolderEntity – accountId, name, specialUse, delimiter, attributes
• MessageHeaderEntity – accountId, folder, uid, from, subject, date, flags,

hasAttachments
• MessageBodyEntity – text, html, rawBody, contentType, charset, transferEncoding
• AttachmentEntity – partId, filename, mimeType, sizeBytes, data, contentId, isInline
• OutboxItemEntity – id, accountId, status, attempts, from, to, subject,

attachmentsJson
• OutboxAttachment – filename, mimeType, dataBase64 (Codable für JSON)

Technische Hinweise
• Composite Primary Keys: (account_id, folder, uid) für eindeutige

Nachrichtenreferenz
• Epoch Timestamps: Alle Datums-Felder als INTEGER (Unix-Sekunden)
• Nullable Spalten: TEXT-Felder ohne NOT NULL für optionale Metadaten
• CREATE IF NOT EXISTS: Idempotente DDL-Statements
• ALTER TABLE: Spalten werden nur hinzugefügt, nie entfernt (Backward

Compatibility)
• Partial Index: WHERE-Klauseln für effiziente Indizes

AILO Handbuch | Teil 3: Data Access Layer

Seite 5 | AILO Database Schema v1.0

───────────────────────────────────────
AILO Handbuch – Kapitel 3.1 Database Schema

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 3: Data Access Layer

Seite 1 | AILO DAO Implementations v1.0

3.2 DAO Implementations
Database/DAO/ • Spezialisierte Data Access Objects

Übersicht
Die DAO-Architektur in AILO folgt dem Repository-Pattern mit spezialisierten Data Access
Objects. Die monolithische MailDAO wurde in spezialisierte DAOs aufgeteilt, die über eine
zentrale DAOFactory verwaltet werden. Dies ermöglicht bessere Testbarkeit, Separation of
Concerns und Performance-Optimierungen.

DAO Verantwortlichkeit
BaseDAO Basis-Klasse mit SQLite-Verbindung und Transaktionen
AccountDAO Account CRUD und Settings
FolderDAO Ordner-Hierarchie und Special Folders
MailReadDAO Lese-Operationen (Headers, Body, Attachments)
MailWriteDAO Schreib-Operationen (Insert, Update, Delete)
AttachmentDAO Anhang-Management mit File Storage
OutboxDAO Queue-Management für ausgehende Mails
DAOFactory Zentrale Factory und Connection-Sharing

BaseDAO
Die abstrakte Basis-Klasse für alle DAOs. Stellt SQLite-Verbindung, Thread-Synchronisation
und Transaktionsunterstützung bereit.

Eigenschaften
• db: OpaquePointer? – SQLite-Verbindung
• dbPath: String – Pfad zur Datenbank-Datei
• dbQueue: DispatchQueue – Thread-sichere Serialisierung

Kernmethoden
Methode Beschreibung
openDatabase() Öffnet SQLite-Verbindung
closeDatabase() Schließt Verbindung
ensureOpen() Stellt offene Verbindung sicher
setSharedConnection(_:) Setzt geteilte Verbindung von DAOFactory
exec(_:) Führt SQL-Statement aus
withTransaction(_:) Führt Closure in Transaktion aus

AccountDAO
Verwaltet E-Mail-Account-Konfigurationen. Implementiert CRUD-Operationen für
AccountEntity.

Protocol: AccountDAO
• create(_:) – Neuen Account anlegen
• get(id:) → AccountEntity? – Account laden
• getAll() → [AccountEntity] – Alle Accounts

AILO Handbuch | Teil 3: Data Access Layer

Seite 2 | AILO DAO Implementations v1.0

• update(_:) – Account aktualisieren
• delete(id:) – Account löschen
• getByEmail(_:) → AccountEntity? – Suche per E-Mail

FolderDAO
Spezialisiert auf Ordner-Management mit Hierarchie-Support und Special-Folder-Mapping.

Protocol: FolderDAO
Methode Beschreibung
store(_:) Ordner speichern/aktualisieren
get(accountId:name:) Einzelnen Ordner laden
getAll(for:) Alle Ordner eines Accounts
getSpecialFolders(for:) Special Folders Mapping [String: String]
updateSpecialFolders(for:mapping:) Special Folders setzen
getFolderHierarchy(for:) [FolderHierarchyNode] – Baumstruktur
updateFolderAttributes(...) IMAP-Attribute aktualisieren
removeFoldersNotIn(...) Verwaiste Ordner entfernen
getFolderStats(for:) [FolderStats] – Statistiken

Supporting Types
• FolderHierarchyNode: folder + children[] – Rekursive Baumstruktur
• FolderStats: folderName, messageCount, unreadCount, totalSizeBytes

MailReadDAO
Optimiert für Lese-Operationen. Hot Path für Listen-Ansichten und Message-Details.

Kern-Operationen
Methode Rückgabe
headers(accountId:folder:limit:offset:) [MailHeader]
body(accountId:folder:uid:) String?
bodyEntity(accountId:folder:uid:) MessageBodyEntity?
attachments(accountId:folder:uid:) [AttachmentEntity]
attachmentStatus(accountId:folder:) [String: Bool]
getMimeParts(messageId:) [MimePartEntity]
getRenderCache(messageId:) RenderCacheEntry?
getBlobMeta(blobId:) BlobMetaEntry?

Blob Storage Analytics
• getBlobStorageMetrics() → BlobStorageMetrics
• getOrphanedBlobs() → [String] – Unreferenzierte Blobs
• getBlobsOlderThan(_:) → [String] – Für Cleanup

MailWriteDAO
Alle schreibenden Operationen für Nachrichten, Bodies, MIME-Parts und Caches.

Message Operations

AILO Handbuch | Teil 3: Data Access Layer

Seite 3 | AILO DAO Implementations v1.0

• insertHeaders(accountId:folder:headers:)
• storeBody(accountId:folder:uid:body:)
• updateFlags(accountId:folder:uid:flags:)
• deleteMessage(accountId:folder:uid:)
• purgeFolder(accountId:folder:)

MIME & Cache Operations
• storeMimeParts(_:) – [MimePartEntity] speichern
• storeRenderCache(messageId:html:text:generatorVersion:)
• invalidateRenderCache(messageId:)
• storeBlobMeta(blobId:hashSha256:sizeBytes:)
• incrementBlobReference(_:) / decrementBlobReference(_:)

AttachmentDAO
Spezialisiertes Attachment-Management mit File-Storage und automatischer Deduplizierung
basierend auf SHA256-Checksums.

Konfiguration
Parameter Beschreibung
attachmentsDirectory URL für File-Storage (Documents/Attachments)
maxInlineSize Schwelle für Blob vs. File (Default: 1MB)
deduplicationEnabled SHA256-basierte Deduplizierung aktiv

Protocol: AttachmentDAO
• store(accountId:folder:uid:attachment:)
• getAll(accountId:folder:uid:) → [AttachmentEntity]
• getAttachmentData(attachment:) → Data?
• delete(accountId:folder:uid:partId:)
• cleanupOrphanedFiles() – Verwaiste Dateien löschen
• getStorageMetrics() → AttachmentStorageMetrics

OutboxDAO (MailOutboxDAO)
Queue-Management für ausgehende E-Mails mit Retry-Logik und Status-Tracking.

Protocol: MailOutboxDAO
Methode Beschreibung
enqueue(_:) Nachricht in Queue einfügen
getPendingItems(for:limit:) Pending Items abrufen
updateStatus(id:status:error:) Status aktualisieren
markAsSending(id:) Status → sending
markAsSent(id:) Status → sent
markAsFailed(id:error:) Status → failed + Fehlertext
incrementAttempts(id:) Versuchszähler erhöhen
removeSentItems(olderThan:) Alte gesendete Items löschen
removeFailedItems(maxAge:) Alte fehlgeschlagene löschen

Status-Workflow

AILO Handbuch | Teil 3: Data Access Layer

Seite 4 | AILO DAO Implementations v1.0

1. pending – In Queue, wartet auf Verarbeitung
2. sending – Wird gerade gesendet
3. sent – Erfolgreich gesendet
4. failed – Fehlgeschlagen (mit lastError)
5. cancelled – Vom Benutzer abgebrochen

DAOFactory
Zentrale Factory für DAO-Erstellung und Connection-Sharing. Implementiert Lazy
Initialization und verwaltet eine geteilte SQLite-Verbindung.

Initialization
• dbPath: String – Pfad zur SQLite-Datenbank
• attachmentsDirectory: URL? – Custom Attachment-Pfad
• maxInlineSize: Int – Schwelle für Inline-Blobs (Default: 1MB)
• deduplicationEnabled: Bool – Deduplizierung (Default: true)
• maxRetryAttempts: Int – Outbox Retries (Default: 3)

DAO Accessors
• mailReadDAO: MailReadDAO
• mailWriteDAO: MailWriteDAO
• attachmentDAO: AttachmentDAO
• outboxDAO: MailOutboxDAO
• folderDAO: FolderDAO
• accountDAO: AccountDAO
• mailFullAccessDAO: MailFullAccessDAO – Kombinierter Zugriff

Database Management
• initializeDatabase() – Öffnet DB, teilt Connection, erstellt Schema
• closeAllConnections() – Schließt geteilte Verbindung
• validateSchema() → (userVersion, foldersTableExists)
• performMaintenance() – Cleanup, VACUUM, ANALYZE
• getPerformanceMetrics() → [String: (average, calls)]
• resetPerformanceMetrics() – Statistiken zurücksetzen

Migration von Legacy-MailDAO
Für schrittweise Migration steht ein LegacyMailDAOAdapter als Kompatibilitätsschicht bereit.

Vorher → Nachher
Alt (MailDAO) Neu (DAOFactory)
mailDAO.headers(...) daoFactory.mailReadDAO.headers(...)
mailDAO.body(...) daoFactory.mailReadDAO.body(...)
mailDAO.insertHeaders(...) daoFactory.mailWriteDAO.insertHeaders(...)
mailDAO.storeBody(...) daoFactory.mailWriteDAO.storeBody(...)
mailDAO.attachments(...) daoFactory.attachmentDAO.getAll(...)

Technische Hinweise

AILO Handbuch | Teil 3: Data Access Layer

Seite 5 | AILO DAO Implementations v1.0

• Connection Sharing: Alle DAOs nutzen dieselbe SQLite-Verbindung
• Thread Safety: DispatchQueue.sync für serialisierten Zugriff
• Lazy Initialization: DAOs werden erst bei Zugriff erstellt
• Protocol-Based: Alle DAOs haben Protocol + Impl für Testbarkeit
• Performance: 40-60% schnellere Reads durch Spezialisierung
• Deduplication: 20-30% Speicherersparnis bei Attachments

───────────────────────────────────────
AILO Handbuch – Kapitel 3.2 DAO Implementations

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 3: Data Access Layer

Seite 1 | AILO DAO Utilities v1.0

3.3 DAO Utilities
Database/DAO/DAOHelpers.swift • SQLite Extensions & Performance Tools

Übersicht
Die DAO Utilities stellen essenzielle Hilfsfunktionen für alle Data Access Objects bereit. Sie
umfassen SQLite-Typ-Extraktion, Performance-Monitoring, Transaktions-Management,
Query-Building und Schema-Validierung.

Komponente Beschreibung
OpaquePointer Extensions SQLite-Typ-Extraktion für Spalten
DAOPerformanceMonitor Query-Timing und Metriken-Sammlung
DAOTransactionManager Batch-Operationen in Transaktionen
SQLQueryBuilder Type-safe Query-Konstruktion
DAOSchemaValidator Schema-Validierung und Version-Check

SQLite Type Extensions
Extensions auf OpaquePointer für typsichere Spalten-Extraktion aus SQLite-Statements.
Alle Methoden sind null-safe und konvertieren SQLite-Typen in Swift-Typen.

Basis-Typen
Methode Rückgabe Beschreibung
columnText(_:) String? Text-Spalte als String
columnInt(_:) Int Integer-Spalte
columnInt64(_:) Int64 64-Bit Integer
columnDouble(_:) Double Fließkommazahl
columnBlob(_:) Data? Binary Large Object
columnBool(_:) Bool Boolean (Int != 0)
columnIsNull(_:) Bool Prüft auf NULL

Erweiterte Typen
Methode Rückgabe Beschreibung
columnUUID(_:) UUID? UUID aus TEXT-Spalte
columnDate(_:) Date? Date aus Epoch (Double)
columnStringArray(_:) [String] Kommaseparierte Strings

DAOPerformanceMonitor
Singleton-basiertes Performance-Monitoring für alle DAO-Operationen. Sammelt Timing-
Metriken und berechnet Durchschnittswerte. Thread-sicher durch DispatchQueue.

Architektur
• Singleton Pattern: shared Instance für globalen Zugriff
• Thread Safety: DispatchQueue für serialisierten Zugriff auf Metriken
• DAOMetric Struct: totalTime, callCount, averageTime (computed)

API

AILO Handbuch | Teil 3: Data Access Layer

Seite 2 | AILO DAO Utilities v1.0

Methode Beschreibung
measure<T>(_:_:) Misst Ausführungszeit eines Blocks → T
getMetrics() [String: (average, calls)] – Alle Metriken
resetMetrics() Setzt alle Metriken zurück

Verwendung
return try DAOPerformanceMonitor.measure("headers_query") { // ... SQL-
Operationen ... }

Gemessene Operationen
• headers_query, body_query, body_entity_query
• attachments_query, attachment_status_query
• render_cache_query, blob_meta_query, raw_blob_id_query
• blob_storage_metrics_query, orphaned_blobs_query, old_blobs_query
• store_folder, get_attachment, get_all_attachments
• insert_headers, store_body, update_flags, delete_message

DAOTransactionManager
Verwaltet Batch-Operationen innerhalb von Datenbank-Transaktionen. Ermöglicht atomare
Ausführung mehrerer Operationen mit automatischem Rollback bei Fehlern.

Initialisierung
let transactionManager = DAOTransactionManager(baseDAO)

Methoden
Methode Beschreibung
performBatch<T>(_:) Führt Array von Closures in Transaktion aus → [T]
performBatchInsert<Entity>(...) Batch-Insert mit konfigurierbarer Chunk-Größe

performBatchInsert Parameter
• entities: [Entity] – Zu speichernde Entitäten
• batchSize: Int = 100 – Chunk-Größe pro Transaktion
• insertOperation: ([Entity]) throws -> Void – Insert-Closure

Array Chunking Extension
Private Extension auf Array für effizientes Aufteilen in Batches: chunked(into: Int) →
[[Element]]

SQLQueryBuilder
Fluent API für type-safe SQL-Query-Konstruktion. Verwendet Builder-Pattern mit
verkettbaren Methoden.

Builder-Kette
1. SQLQueryBuilder.select(...) → SelectBuilder
2. .from(table:) → FromBuilder

AILO Handbuch | Teil 3: Data Access Layer

Seite 3 | AILO DAO Utilities v1.0

3. .whereCondition(_:) → WhereBuilder (optional)
4. .orderBy(_:ascending:) → OrderBuilder
5. .limit(_:offset:) → String (finale Query)
6. .build() → String (an jedem Punkt aufrufbar)

Builder-Typen
Builder Verfügbare Methoden
SelectBuilder from(_:) → FromBuilder
FromBuilder whereCondition(_:), orderBy(_:ascending:), build()
WhereBuilder orderBy(_:ascending:), build()
OrderBuilder limit(_:offset:), build()

Beispiel
let query = SQLQueryBuilder .select("uid", "from_addr", "subject")
.from("message_header") .whereCondition("account_id = ?")
.orderBy("date", ascending: false) .limit(50, offset: 0)

DAOSchemaValidator
Validiert die Datenbank-Schema-Integrität. Prüft Tabellen-Existenz und Schema-Version
über PRAGMA-Befehle.

Initialisierung
let validator = DAOSchemaValidator(baseDAO)

Methoden
Methode Beschreibung
validateTable(_:) Prüft Tabellen-Existenz → Bool
getUserVersion() PRAGMA user_version lesen → Int
setUserVersion(_:) PRAGMA user_version setzen

Validierungsstrategie
7. PRAGMA schema_version ausführen (Pending Transactions committen)
8. PRAGMA table_info(tableName) – Primäre Prüfmethode
9. Fallback: sqlite_master Query bei negativem Ergebnis
10. Debug-Logging bei Inkonsistenzen zwischen beiden Methoden

Verwendung in DAOFactory
func validateSchema() throws -> (userVersion: Int, foldersTableExists: Bool) {
let validator = DAOSchemaValidator(_accountDAO) let userVersion = try
validator.getUserVersion() let foldersTableExists = try
validator.validateTable(MailSchema.tFolders) return (userVersion,
foldersTableExists) }

BaseDAO Bind Helpers
Interne Helper-Methoden in BaseDAO für sicheres Parameter-Binding mit SQLite. Alle
Methoden verwenden SQLITE_TRANSIENT für String-Kopien.

AILO Handbuch | Teil 3: Data Access Layer

Seite 4 | AILO DAO Utilities v1.0

Methode Beschreibung
bindText(_:_:_:) String? binden (NULL bei nil)
bindInt(_:_:_:) Int? binden
bindUUID(_:_:_:) UUID als TEXT binden
bindBlob(_:_:_:) Data als BLOB binden
debugBoundValues(_:) Debug-Ausgabe aller Parameter

Technische Hinweise
• SQLITE_TRANSIENT: Erzwingt Kopie von Strings (Memory Safety)
• async Metrics Recording: Performance-Daten werden asynchron geschrieben
• Transaktion-Semantik: BEGIN → Operation → COMMIT/ROLLBACK
• PRAGMA vs sqlite_master: Beide Methoden für zuverlässige Validierung
• Epoch Timestamps: Date als Double (timeIntervalSince1970) gespeichert
• Variadic Columns: select() akzeptiert beliebig viele Spaltennamen

───────────────────────────────────────
AILO Handbuch – Kapitel 3.3 DAO Utilities

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 3: Data Access Layer

Seite 1 | AILO Datenmodelle v1.0

3.4 Datenmodelle
Database/Models/ • Swift-Structs für Persistenz und Domain-Logic

Übersicht
AILO verwendet leichtgewichtige Swift-Structs als Datenmodelle. Alle Modelle sind Sendable
für Swift Concurrency, Codable für JSON-Serialisierung und Equatable für Vergleiche. Die
Modelle decken drei Hauptbereiche ab: Mail-Entitäten, Log-System und Pre-Prompt-Katalog.

Modell Beschreibung
LogEntry Text-/Audio-Log-Einträge
AccountEntity E-Mail-Account-Konfiguration
FolderEntity IMAP-Ordner mit Attributen
MessageHeaderEntity E-Mail-Header für Listen
MessageBodyEntity E-Mail-Body mit Metadaten
AttachmentEntity Anhänge mit Deduplizierung
OutboxItemEntity Ausgehende E-Mails Queue
AIPrePromptPreset Pre-Prompt-Inhalt
PrePromptMenuItem Hierarchisches Menü-Item
PrePromptRecipe Kombinierte Prompts
Cookbook Kochbuch-Container
RecipeMenuItem Rezept-Menüstruktur

LogEntry
Repräsentiert einen Log-Eintrag im Tagebuch-System. Unterstützt sowohl Text- als auch
Audio-Einträge mit optionaler KI-Verarbeitung.

Eigenschaften
Feld Typ Beschreibung
id UUID Eindeutige ID
title String? Optionaler Titel
text String? Text-Inhalt
audioURL URL? Pfad zur Audio-Datei
createdAt Date Erstellungsdatum
category String? Kategorie-Zuordnung
tags [String] Tag-Liste
reminderDate Date? Erinnerungsdatum
useAI Bool? KI-Verarbeitung aktiv
aiText String? KI-generierter Text

Protokolle
• Identifiable: id-Property für SwiftUI-Listen
• Codable: JSON-Serialisierung für Persistenz
• Equatable: Vergleichbarkeit für Updates

Mail-Entitäten
Die Mail-Entitäten bilden das E-Mail-Datenmodell ab. Alle sind Sendable für Swift
Concurrency und in MailSchema.swift definiert.

AILO Handbuch | Teil 3: Data Access Layer

Seite 2 | AILO Datenmodelle v1.0

AccountEntity
Feld Typ Beschreibung
id UUID Account-ID
displayName String Anzeigename
emailAddress String E-Mail-Adresse
hostIMAP String IMAP-Server
hostSMTP String SMTP-Server
createdAt Date Erstellungsdatum
updatedAt Date Änderungsdatum

FolderEntity
• accountId: UUID – Zugehöriger Account
• name: String – Server-Name (z.B. "INBOX")
• specialUse: String? – inbox, sent, drafts, trash, spam
• delimiter: String? – Hierarchie-Trennzeichen
• attributes: [String] – IMAP-Flags (\Noselect, etc.)

MessageHeaderEntity
• accountId, folder, uid: Composite Key
• from: String – Absender-Adresse
• subject: String – Betreff
• date: Date? – Nachrichtendatum
• flags: [String] – \Seen, \Flagged, etc.
• hasAttachments: Bool – Anhänge vorhanden
• signatureStatus: SignatureStatus? – S/MIME Status (v4)
• signerEmail: String? – Signatur-E-Mail (v4)

MessageBodyEntity
• text: String? – Plain-Text Body
• html: String? – HTML Body
• rawBody: String? – Roher MIME-Body (v3)
• contentType, charset: MIME-Metadaten (v2)
• transferEncoding: String? – quoted-printable, base64
• isMultipart: Bool – Multipart-Nachricht
• rawSize, processedAt: Verarbeitungs-Metadaten

AttachmentEntity
• partId: String – MIME Part-ID (z.B. "1.2")
• filename, mimeType: Dateiinformationen
• sizeBytes: Int – Größe in Bytes
• data: Data? – Binärdaten (optional)
• contentId: String? – CID für Inline-Attachments
• isInline: Bool – Eingebettetes Bild
• filePath: String? – Externer Dateipfad
• checksum: String? – SHA256 für Deduplizierung

OutboxItemEntity
• id: UUID – Outbox-ID
• accountId: UUID – Absender-Account
• status: OutboxStatusEntity – pending/sending/sent/failed

AILO Handbuch | Teil 3: Data Access Layer

Seite 3 | AILO Datenmodelle v1.0

• attempts: Int – Versuchszähler
• from, to, cc, bcc: Adressen
• subject, textBody, htmlBody: Inhalt
• attachmentsJson: String? – JSON-serialisierte Anhänge

Pre-Prompt-Modelle
Das Pre-Prompt-System verwendet ein hierarchisches Modell mit Kategorien, Presets und
Rezepten. Alle Modelle sind Codable für UserDefaults-Persistenz.

AIPrePromptPreset
Content-Modell für Pre-Prompt-Vorlagen. Enthält den eigentlichen Prompt-Text.
Feld Typ Beschreibung
id UUID Preset-ID
name String Anzeigename
text String Prompt-Inhalt
icon String Emoji (max 3 Zeichen)
keywords String Semikolon-getrennte Keywords
isDefault Bool Standard-Preset
createdAt Date Erstellungsdatum
updatedAt Date Änderungsdatum

PrePromptMenuItem
Hierarchisches Menü-Item für Katalog-Struktur. Kann Ordner oder Preset-Referenz sein.

• id: UUID – Menü-Item-ID
• parentID: UUID? – Parent-Folder (nil = Root)
• name, icon: Anzeige-Properties
• keywords: String – Kontext-Metadaten
• sortOrder: Int – Reihenfolge
• presetID: UUID? – Referenz auf AIPrePromptPreset
• isFolder: Bool (computed) – presetID == nil
• Factory Methods: .folder(...), .preset(...)

PrePromptRecipe
"Kochrezept" das mehrere Katalog-Elemente zu einem Prompt kombiniert.

• id, name, icon: Identifikation
• keywords: String – Rezept-Metadaten
• elementIDs: [UUID] – Geordnete MenuItem-IDs
• separator: String – Trennzeichen (Default: "\n\n")
• generatePrompt(...): Kombiniert alle Elemente
• collectKeywords(...): Sammelt alle Keywords hierarchisch

Cookbook & RecipeMenuItem
Kochbuch-Container und Menüstruktur für Rezepte (analog zu PrePromptMenuItem).

• Cookbook: id, name, icon, keywords, sortOrder
• RecipeMenuItem: id, cookbookID, parentID, recipeID, name, sortOrder
• Struktur: Cookbook → RecipeMenuItem (Kapitel/Rezept-Referenz)

AILO Handbuch | Teil 3: Data Access Layer

Seite 4 | AILO Datenmodelle v1.0

Keyword-Format
Keywords verwenden ein einheitliches Format für Metadaten-Speicherung:

• Format: "Schlüssel: Wert; Schlüssel2: Wert2"
• Beispiel: "Anrede: Du; Stil: formell; Länge: kurz"
• keywordPairs: Computed Property → [(key: String, value: String)]
• keyword(_:): Methode zum Abrufen einzelner Werte

Technische Hinweise
• Sendable: Alle Modelle sind thread-safe für Swift Concurrency
• Codable: Custom init(from:) für Migration von alten Formaten
• Equatable: Für SwiftUI-Diff und Update-Detection
• Identifiable: id-Property für ForEach und List
• Factory Methods: Convenience-Initializer für häufige Fälle
• updated(): Immutable Updates mit neuem updatedAt-Timestamp
• Icon-Limit: Emoji auf 3 Zeichen begrenzt (String.prefix(3))

───────────────────────────────────────
AILO Handbuch – Kapitel 3.4 Datenmodelle

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 3: Data Access Layer

Seite 1 | AILO DataStore v1.0

3.5 DataStore (Logs)
Database/Store/DataStore.swift • JSON-basierte Log-Persistierung

Übersicht
Der DataStore ist ein ObservableObject, das die Persistierung von LogEntry-Objekten
verwaltet. Er verwendet JSON-Serialisierung für die Speicherung und bietet vollständige
CRUD-Operationen sowie Audio-URL-Management. Die Klasse ist @MainActor für Thread-
Sicherheit in SwiftUI.

Feature Beschreibung
ObservableObject SwiftUI-Integration mit @Published
JSON-Persistierung Automatische Speicherung in entries.json
CRUD-Operationen add(), update(), delete()
Audio-URL-Management Pfad-Verwaltung für Audio-Dateien
@MainActor Thread-sichere UI-Updates
Async/Await Moderne Swift Concurrency

Architektur
Der DataStore folgt dem Repository-Pattern und kapselt alle Persistierung-Logik. Er wird als
EnvironmentObject in der SwiftUI-Hierarchie geteilt.

Klassenstruktur
@MainActor final class DataStore: ObservableObject { @Published
private(set) var entries: [LogEntry] = [] @Published var
pendingImportText: String? = nil private let fileName = "entries.json"
}

Properties
Property Typ Beschreibung
entries [LogEntry] @Published, private(set) – Alle Logs
pendingImportText String? @Published – Pending Import-Text
fileName String Private Konstante: "entries.json"

CRUD-Operationen

add(_:)
Fügt einen neuen LogEntry am Anfang der Liste ein (neueste zuerst).
func add(_ entry: LogEntry) { entries.insert(entry, at: 0) Task {
await save() } }

update(_:)
Aktualisiert einen bestehenden Eintrag anhand seiner ID.
func update(_ entry: LogEntry) { if let idx = entries.firstIndex(where:
{ $0.id == entry.id }) { entries[idx] = entry Task { await
save() } } }

AILO Handbuch | Teil 3: Data Access Layer

Seite 2 | AILO DataStore v1.0

delete(at:)
Löscht Einträge an den angegebenen IndexSet-Positionen (SwiftUI-kompatibel).
func delete(at offsets: IndexSet) { for index in offsets.sorted(by: >)
{ if entries.indices.contains(index) {
entries.remove(at: index) } } Task { await save() } }

Persistierung
Die Persistierung erfolgt über JSON-Dateien im Documents-Verzeichnis. Laden und
Speichern sind async-Operationen.

Speicherort
• Verzeichnis: FileManager.documentDirectory
• Dateiname: entries.json
• Pfad: ~/Documents/entries.json

load()
Lädt alle Einträge aus der JSON-Datei. Wird im init() automatisch aufgerufen.
func load() async { let url = storeURL() guard
FileManager.default.fileExists(atPath: url.path) else { return } let
data = try Data(contentsOf: url) let decoded = try
JSONDecoder().decode([LogEntry].self, from: data) self.entries =
decoded }

save()
Speichert alle Einträge atomar in die JSON-Datei.
func save() async { let url = storeURL() let data = try
JSONEncoder().encode(entries) try data.write(to: url, options:
[.atomic]) }

URL-Management
Der DataStore bietet Helper-Methoden für Dateipfad-Verwaltung.

Methode Beschreibung
documentsURL() Gibt das Documents-Verzeichnis zurück → URL
storeURL() Gibt den Pfad zur entries.json zurück → URL (private)
audioURL(for:) Konstruiert Audio-Dateipfad → URL

Audio-URL-Verwendung
// Audio-Datei-Pfad für LogEntry let url = store.audioURL(for:
entry.audioFileName!) if FileManager.default.fileExists(atPath: url.path) {
let data = try Data(contentsOf: url) // Audio abspielen oder
verarbeiten }

LogEntry-Modell
Das LogEntry-Struct repräsentiert einen einzelnen Log-Eintrag (Text oder Audio).

AILO Handbuch | Teil 3: Data Access Layer

Seite 3 | AILO DataStore v1.0

EntryType Enum
Case Beschreibung
.text Text-Log-Eintrag mit text-Property
.audio Audio-Log mit audioFileName-Property

LogEntry Properties
Feld Typ Beschreibung
id UUID Eindeutige ID (Default: UUID())
date Date Erstellungsdatum (Default: Date())
type EntryType .text oder .audio
title String? Optionaler Titel
text String? Text-Inhalt (für .text)
audioFileName String? Dateiname (für .audio)
category String? Kategorie-Zuordnung
tags [String] Tag-Liste (Default: [])
reminderDate Date? Erinnerungsdatum
useAI Bool? KI-Verarbeitung aktiviert
aiText String? KI-generierter Text

Factory Methods
• LogEntry.text(_:title:category:tags:reminderDate:useAI:aiText:)
• LogEntry.audio(fileName:title:category:tags:reminderDate:)

SwiftUI-Integration
Der DataStore wird als EnvironmentObject in der App-Hierarchie geteilt.

App-Setup
@main struct AILO_APPApp: App { @StateObject private var store =
DataStore() var body: some Scene { WindowGroup {
ContentView() .environmentObject(store) } } }

View-Verwendung
struct LogsListView: View { @EnvironmentObject private var store:
DataStore var body: some View { List {
ForEach(store.entries) { entry in LogRowView(entry: entry)
} .onDelete(perform: store.delete) } } }

Technische Hinweise
• @MainActor: Garantiert UI-Updates auf Main Thread
• private(set): entries nur intern mutierbar
• .atomic Option: Verhindert korrupte Dateien bei Absturz
• Sortierung: Neueste Einträge zuerst (insert at: 0)
• IndexSet Handling: sorted(by: >) für sichere Löschung
• Async Init: load() wird im Task {} gestartet
• Error Handling: Silent fail (optional: Logging)
• Audio-Dateien: Separat im Documents-Verzeichnis

AILO Handbuch | Teil 3: Data Access Layer

Seite 4 | AILO DataStore v1.0

───────────────────────────────────────
AILO Handbuch – Kapitel 3.5 DataStore (Logs)

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 4: Helpers & Parser

Seite 1 | AILO IMAP/MIME Parser v1.0

4.1 IMAP/MIME Parser
Services/Mail/IMAP/ • Helpers/Parsers/ • E-Mail-Protokoll & Encoding-Verarbeitung

Übersicht
Das Parser-Modul verarbeitet IMAP-Protokollnachrichten und MIME-kodierte Inhalte. Es
dekodiert ENVELOPE, FLAGS, BODYSTRUCTURE und LIST-Responses sowie RFC2047-
kodierte Header (Subject, From). Das System unterstützt multiple Charsets (UTF-8, ISO-
8859-1, Windows-1252) und Transfer-Encodings (Base64, Quoted-Printable).

Komponente Beschreibung
IMAPParsers ENVELOPE, FLAGS, LIST, BODYSTRUCTURE Parsing
RFC2047EncodedWordsParser Encoded-Word Dekodierung (=?charset?B/Q?...?=)
MIMEParser Multipart-Parsing, Boundary-Handling
TransferEncodingDecoder Base64, Quoted-Printable Dekodierung
ContentDecoder Charset-Konvertierung, Text/Enriched
AttachmentExtractor Attachment-Extraktion aus MIME

IMAPParsers
Zentrale Klasse für das Parsing von IMAP-Server-Responses. Verarbeitet FETCH-
Antworten und extrahiert strukturierte Daten.

Datentypen
Struct Felder
EnvelopeRecord uid, subject, from, internalDate
FlagsRecord uid, flags: [String]
FolderInfo name, delimiter, attributes: [String]
MessageEnvelope subject, from, to, cc, bcc, date, messageId
FetchResult uid, flags, internalDate, envelope, bodySection, bodyStructure
BodyStructure enum: .single(PartInfo) | .multipart(type, subType, parts)

Parse-Methoden
Methode Beschreibung
parseEnvelope(_:) [String] → [EnvelopeRecord]
parseFlags(_:) [String] → [FlagsRecord]
parseUIDs(_:) String → [String] (SEARCH Response)
parseInternalDate(_:) String → Date?
parseBodySection(_:) [String] → String? (Body-Inhalt)
parseFetchResponse(_:) Data → FetchResult (throws)
parseEnvelope(_:) single String → MessageEnvelope (throws)
parseBodyStructure(_:) String → BodyStructure (throws)
parseListResponse(_:) String → FolderInfo (throws)

BodyStructure Enum
public enum BodyStructure: Sendable, Equatable { case single(PartInfo)
case multipart(type: String, subType: String, parts: [BodyStructure]) }

IMAPBodyStructure Enum

AILO Handbuch | Teil 4: Helpers & Parser

Seite 2 | AILO IMAP/MIME Parser v1.0

• .text(subtype:charset:) – text/plain, text/html
• .multipart(subtype:parts:) – multipart/mixed, alternative
• .application(subtype:) – application/pdf, octet-stream
• .image/.audio/.video(subtype:) – Medientypen
• .message(subtype:) – message/rfc822

RFC2047EncodedWordsParser
Dekodiert RFC2047 Encoded-Words in E-Mail-Headern. Format:
=?charset?encoding?data?= wobei encoding B (Base64) oder Q (Quoted-Printable) ist.

API
Methode Beschreibung
decode(_:) Allgemeine Dekodierung → String
decodeSubject(_:) Subject-Header dekodieren → String
decodeFrom(_:) From-Header dekodieren → String
containsEncodedWord(_:) Prüft auf Encoded-Word → Bool
encode(_:charset:encoding:) Text zu Encoded-Word kodieren

EncodingType Enum
• .base64 ("B"): Standard Base64-Kodierung
• .quotedPrintable ("Q"): Q-Encoding mit =XX Escape-Sequenzen

Beispiele
// Base64 "=?UTF-8?B?Q2Fmw6kgaW4gTcO8bmNoZW4=?=" → "Café in München" // Quoted-
Printable "=?ISO-8859-1?Q?Caf=E9_in_M=FCnchen?=" → "Café in München" // UTF-8 Q-
Encoding (Multi-Byte) "=?UTF-8?Q?=C3=BC=C3=A4=C3=B6=C3=9F?=" → "üäöß"

TransferEncodingDecoder
Dekodiert Content-Transfer-Encoding für E-Mail-Bodies. Unterstützt Base64, Quoted-
Printable, 7bit, 8bit und Binary.

Hauptmethode
static func decode(_ content: String, encoding: String?,
charset: String?) -> String

Unterstützte Encodings
Encoding Verarbeitung
base64 Standard Base64 → Data → String mit Charset
quoted-printable =XX Escape-Sequenzen, Soft Line Breaks (=)
7bit / 8bit Passthrough (ASCII / Extended ASCII)
binary Raw-Daten ohne Transformation

Charset-Handling
• UTF-8: .utf8 (Default)
• ISO-8859-1: .isoLatin1
• Windows-1252: .windowsCP1252
• US-ASCII: .ascii

AILO Handbuch | Teil 4: Helpers & Parser

Seite 3 | AILO IMAP/MIME Parser v1.0

MIMEParser
Verarbeitet Multipart-MIME-Nachrichten und extrahiert einzelne Parts anhand von
Boundaries.

Kernfunktionen
• parse(_:): Hauptparser → [MIMEPart]
• extractContentType(_:): Content-Type Header parsen
• extractFilename(_:): Dateiname aus Content-Disposition
• decodeQuotedPrintable(_:): QP-Dekodierung mit Charset
• decodeRFC5987(_:): Extended Parameter (filename*=)

Multipart-Verarbeitung
1. Boundary aus Content-Type extrahieren
2. Content an Boundary-Markern splitten
3. Jeden Part rekursiv parsen (nested Multipart)
4. Transfer-Encoding pro Part anwenden

AttachmentExtractor
Extrahiert Attachments aus MIME-Parts mit Unterstützung für verschiedene Filename-
Encodings.

Filename-Pattern-Priorität
5. filename*=utf-8''... (RFC 5987)
6. filename="..." (Quoted)
7. filename=... (Unquoted)
8. name="..." (Fallback)
9. name=... (Letzter Fallback)

ExtractedAttachment Struct
• filename: String – Dekodierter Dateiname
• mimeType: String – Content-Type
• data: Data – Binärdaten
• contentId: String? – CID für Inline-Attachments

ContentDecoder
Hochlevel-Decoder für E-Mail-Content mit automatischer Encoding-Erkennung.

Methode Beschreibung
decodeContent(_:encoding:charset:) Vollständige Dekodierung
decodeTextEnriched(_:toHTML:) Text/Enriched zu HTML/Plain
isTextEnriched(_:) Prüft auf Text/Enriched
detectOriginalEncoding(_:) Erkennt Charset aus Content
decodeBase64(_:) Base64 → String
normalizeCharset(_:) Charset-ID normalisieren

RFC2047Test

AILO Handbuch | Teil 4: Helpers & Parser

Seite 4 | AILO IMAP/MIME Parser v1.0

Test-Klasse zur Validierung der RFC2047-Dekodierung mit verschiedenen Encoding-
Szenarien.

Testfälle
• Q-Encoding mit UTF-8 Multi-Byte-Sequenzen (=C3=BC → ü)
• Q-Encoding mit ISO-8859-1 (=E9 → é, =FC → ü)
• Base64-Encoding mit UTF-8
• Multiple Encoded-Words in einem Header
• Mixed Content (Encoded + Plain Text)

Technische Hinweise
• UTF-8 Multi-Byte: Bytes werden gesammelt, dann dekodiert
• Fallback-Kette: UTF-8 → ISO-8859-1 → Original
• Soft Line Break: "=\n" in QP wird entfernt
• Underscore in Q: "_" wird zu Leerzeichen konvertiert
• Case-Insensitive: B/b und Q/q sind äquivalent
• Sendable: Alle Structs sind thread-safe

───────────────────────────────────────
AILO Handbuch – Kapitel 4.1 IMAP/MIME Parser

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 4: Helpers & Parser

Seite 1 | AILO Utilities v1.0

4.2 Utilities
Helpers/Utilities/ • Hilfsklassen für Transport, Resilienz & UI

Übersicht
Das Utilities-Modul enthält wiederverwendbare Hilfsklassen für verschiedene Bereiche: Mail-
Transport-Abstraktion, Task-Abbruchsteuerung, Resilienz-Pattern (Circuit Breaker, Retry),
Markdown-Rendering und Pre-Prompt-Katalog-Verwaltung.

Komponente Beschreibung
MailTransportStubs IMAP/SMTP Transport-Abstraktion
CancellationToken Thread-sicherer Task-Abbruch
CircuitBreaker Circuit Breaker Pattern
RetryPolicy Exponential Backoff mit Jitter
MarkdownHelper Markdown-Formatierung
PrePromptCatalogManager Hierarchische Katalog-Verwaltung
PrePromptPicker Auswahl-UI für Pre-Prompts

MailTransportStubs
Transport-Abstraktion für IMAP/SMTP-Operationen. Kapselt Verbindungsmanagement,
Header-Fetching und Message-Retrieval mit integriertem Caching.

MailSendReceive Klasse
Hauptklasse für Mail-Transport-Operationen mit Repository-Integration.
Methode Beschreibung
fetchHeaders(limit:folder:using:...) Header-Liste mit Cache-Support
fetchMessageUID(_:folder:using:) Einzelne Nachricht abrufen
fetchMessageOptimized(...) BODYSTRUCTURE-basiertes Fetching
clearCache(for:folder:) Cache leeren

FETCH-Response-Rekonstruktion
• Multi-Line FETCH Responses werden rekonstruiert
• Literal-Marker {n} werden aus Responses entfernt
• IMAPParsers.parseEnvelope() für strukturierte Daten
• Flags-Mapping (\Seen → unread: false)

Header-Erkennung
Erkannte Prefixe: From:, To:, Cc:, Subject:, Date:, Message-ID:, Content-Type:, MIME-
Version:, X-*, DKIM-Signature:, ARC-*, Authentication-Results:, etc.

CancellationToken
Thread-sicheres Token für kooperative Task-Abbruchsteuerung. Verwendet DispatchQueue
für synchronisierten Zugriff auf den cancelled-State.

Implementation

AILO Handbuch | Teil 4: Helpers & Parser

Seite 2 | AILO Utilities v1.0

public final class CancellationToken: @unchecked Sendable { private let
q = DispatchQueue(label: "cancellation.token.state") private var
cancelled = false public func cancel() { q.sync { cancelled = true
} } public var isCancelled: Bool { q.sync { cancelled } } }

Verwendung
let token = CancellationToken() // In async Task: while !token.isCancelled
{ // ... work ... } // Abbruch von außen: token.cancel()

CircuitBreaker
Implementiert das Circuit Breaker Pattern mit drei Zuständen: Closed, Open und HalfOpen.
Verhindert Überlastung fehlschlagender Services durch temporäres Blockieren von
Anfragen.

State Enum
State Beschreibung
.closed(Int) Normal – Zählt consecutive Failures
.open(until: Date) Blockiert – Bis Cooldown-Ende
.halfOpen(remainingProbes: Int) Test-Phase – Erlaubt Probe-Requests

Konfiguration
• openAfterFailures: Int = 3 – Schwelle zum Öffnen
• baseOpenDuration: TimeInterval = 10s – Basis-Cooldown
• maxOpenMultiplier: Int = 5 – Max Cooldown-Multiplikator
• halfOpenProbes: Int = 3 – Erfolgreiche Probes zum Schließen

record(_:) Methode
Verarbeitet Result<Void, Error> und transitioniert den State. Gibt optionalen Delay zurück
(Sekunden bis zum nächsten Versuch).

RetryPolicy
Kapselt Exponential Backoff und Circuit Breaker Logik für transiente Netzwerkfehler.
Singleton-basiert mit Thread-sicherer Konfiguration.

ErrorKind Enum
Kind Klasse Beschreibung
.dns transient DNS-Auflösungsfehler
.timeout transient Verbindungs-Timeout
.refused transient Connection Refused
.unreachable transient Host nicht erreichbar
.io transient I/O-Fehler
.auth permanent Authentifizierungsfehler
.protocolErr permanent Protokollfehler
.parseErr permanent Parse-Fehler

BackoffProfile Struct
• base: TimeInterval – Initial Delay

AILO Handbuch | Teil 4: Helpers & Parser

Seite 3 | AILO Utilities v1.0

• factor: Double = 2.0 – Exponentieller Faktor
• max: TimeInterval – Maximum Delay Cap
• jitter: Double = 0.2 – Zufallsabweichung (0.0-1.0)

API
Methode Beschreibung
nextDelay(for:attempt:key:) Berechnet nächsten Delay mit Jitter
recordFailure(_:kind:) Registriert Fehler, öffnet ggf. Circuit
recordSuccess(_:) Schließt Circuit, reset Counters
isOpen(_:) Prüft ob Circuit offen ist
shouldRetry(kind:attempt:key:) Prüft ob Retry erlaubt ist
remainingRetries(kind:attempt:) Verbleibende Retry-Versuche

MarkdownHelper
Einfache Hilfsfunktionen für Markdown-Textformatierung im Editor.

Methode Beschreibung
insertAtLineStart(_:in:) Fügt Präfix (# , -) am Zeilenanfang ein
wrapSelectionBold(_:) Umschließt mit **text**
wrapSelectionItalic(_:) Umschließt mit *text*

PrePromptCatalogManager
Singleton für die Verwaltung des hierarchischen Pre-Prompt-Katalogs. Speichert Menu-
Items, Presets, Recipes und Cookbooks in UserDefaults.

@Published Properties
• menuItems: [PrePromptMenuItem] – Hierarchische Struktur
• presets: [AIPrePromptPreset] – Prompt-Inhalte
• recipes: [PrePromptRecipe] – Kombinierte Prompts
• cookbooks: [Cookbook] – Kochbuch-Container
• recipeMenuItems: [RecipeMenuItem] – Rezept-Menüstruktur

CRUD-Operationen
• addMenuItem(_:), updateMenuItem(_:), deleteMenuItem(_:)
• addPreset(_:in:), updatePreset(_:), deletePreset(_:)
• addRecipe(_:), updateRecipe(_:), deleteRecipe(_:)
• moveMenuItem(_:to:), reorderItems(in:from:to:)

Export/Import
CatalogExport Struct: version, exportDate, menuItems, presets, recipes, cookbooks,
recipeMenuItems. JSON-Serialisierung mit ISO8601-Datumsformat.

PrePromptPicker
SwiftUI-View für die hierarchische Auswahl von Pre-Prompts aus dem Katalog. Unterstützt
Navigation durch Ordner-Hierarchie.

AILO Handbuch | Teil 4: Helpers & Parser

Seite 4 | AILO Utilities v1.0

Features
• Breadcrumb-Navigation durch Ordner
• Unterscheidung Ordner (Folder) vs. Preset-Items
• Selection-Callback für gewählten Preset
• Integration mit PrePromptCatalogManager.shared

Technische Hinweise
• Sendable: CancellationToken, CircuitBreaker sind thread-safe
• Singleton: RetryPolicy.shared, PrePromptCatalogManager.shared
• DispatchQueue: Serialisierter Zugriff auf mutable State
• ObservableObject: PrePromptCatalogManager für SwiftUI-Binding
• Value Type: CircuitBreaker als Struct (copy-on-write)
• Jitter: Zufällige Abweichung verhindert Thundering Herd

───────────────────────────────────────
AILO Handbuch – Kapitel 4.2 Utilities

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 5: Konfiguration

Seite 1 | AILO Settings Keys v1.0

5.1 Settings Keys
Configuration/Settings/SettingsKeys.swift • Zentrale UserDefaults-Konstanten

Übersicht
Die SettingsKeys.swift definiert alle UserDefaults-Schlüssel als zentrale Konstanten. Dies
ermöglicht konsistente Verwendung in der gesamten App und verhindert Tippfehler in Key-
Strings. Die Keys folgen einem hierarchischen Namensschema: config.bereich.unterbereich

Kategorie Anzahl Keys Präfix
KI-Server/Modelle 5 config.ai.server.*
Pre-Prompt System 6 config.ai.preprompt.*
Kategorien 1 config.categories
Mikrofon/Aufnahme 4 config.mic.*
Sprache 1 config.speech.*

KI-Server/Modelle
Konfiguration für KI-Provider wie OpenAI und Ollama.

Konstante UserDefaults Key Typ / Beschreibung
kAIServerAddress config.ai.server.address String – Server-URL
kAIServerPort config.ai.server.port String – Port (leer=443)
kAIAPIKey config.ai.server.apikey String – API-Schlüssel
kAIModel config.ai.server.model String – Modellname
kAIPrePrompt config.ai.preprompt String – Legacy Pre-Prompt

Verwendung
// Lesen let addr = UserDefaults.standard.string(forKey: kAIServerAddress)
?? "" let port = UserDefaults.standard.string(forKey: kAIServerPort) ??
"443" let model = UserDefaults.standard.string(forKey: kAIModel) ??
"llama3:8b" // Schreiben
UserDefaults.standard.set("https://api.openai.com", forKey:
kAIServerAddress)

Pre-Prompt System
Keys für das hierarchische Pre-Prompt-Katalog-System mit Menüstruktur, Presets,
Rezepten und Kochbüchern.

Konstante UserDefaults Key Datentyp
kAIPresetsKey config.ai.preprompts JSON [AIPrePromptPreset]
kAISelectedPresetKey config.ai.preprompt.selected String (UUID)
kPrePromptMenuKey config.ai.preprompt.menu JSON [PrePromptMenuItem]
kPrePromptRecipesKey config.ai.preprompt.recipes JSON [PrePromptRecipe]
kCookbooksKey config.ai.preprompt.cookbooks JSON [Cookbook]
kRecipeMenuKey config.ai.preprompt.recipemenu JSON [RecipeMenuItem]
kCatalogInitializedKey config.ai.preprompt.initialized Bool

JSON-Persistierung
// Laden guard let data = UserDefaults.standard.data(forKey:
kAIPresetsKey), let items = try?

AILO Handbuch | Teil 5: Konfiguration

Seite 2 | AILO Settings Keys v1.0

JSONDecoder().decode([AIPrePromptPreset].self, from: data) else { return }
// Speichern guard let data = try? JSONEncoder().encode(presets) else {
return } UserDefaults.standard.set(data, forKey: kAIPresetsKey)

Kategorien
Benutzerdefinierte Kategorien für Log-Einträge.

Konstante UserDefaults Key Datentyp
kCategories config.categories JSON [String]

Standard-Kategorien
• Allgemein
• Netzwerk
• Dokumentation

Mikrofon/Aufnahme
Einstellungen für Audio-Aufnahme und Spracherkennung.

Konstante UserDefaults Key Typ / Wertebereich
kMicSensitivity config.mic.sensitivity Double 0.0 – 1.0
kSilenceThreshold config.mic.silenceDB Double -60 – 0 dB
kChunkSeconds config.mic.chunkSeconds Double 1 – 10 Sekunden
kSpeechLang config.speech.lang String (z.B. "de-DE")

Standardwerte
• Empfindlichkeit: 0.85 (85%)
• Stille-Schwelle: -40 dB
• Segmentlänge: 2.0 Sekunden
• Sprache: Locale.current (z.B. de-DE)

Verfügbare Sprachen
Code Bezeichnung
de-DE Deutsch (Deutschland)
de-AT Deutsch (Österreich)
de-CH Deutsch (Schweiz)
en-US English (US)
en-GB English (UK)

ConfigView Integration
Die ConfigView.swift verwendet lokale Konstanten, die auf SettingsKeys referenzieren.

Lokale Key-Enum
private enum K { static let categories = "config.categories"
static let micSensitivity = "config.mic.sensitivity" static let
silenceThresholdDB = "config.mic.silenceDB" static let chunkSeconds
= "config.mic.chunkSeconds" static let speechLang =
"config.speech.lang" static let mailSettingsName =
"config.mail.settingsName" }

AILO Handbuch | Teil 5: Konfiguration

Seite 3 | AILO Settings Keys v1.0

NaN-Schutz bei Double-Werten
// Laden mit Validierung let raw = ud.object(forKey: K.micSensitivity) as?
Double ?? 0.85 micSensitivity = raw.isNaN || raw.isInfinite ? 0.85 : raw
// Speichern mit Validierung let valid = value.isNaN || value.isInfinite ?
0.85 : value ud.set(valid, forKey: K.micSensitivity)

Namenskonventionen
• Präfix config.: Alle App-Einstellungen
• Bereich.Unterbereich: Hierarchische Struktur
• Konstante k...: Global let mit k-Präfix
• CamelCase: Konstanten-Namen in Swift
• Lowercase + Dots: Key-Strings in UserDefaults

Technische Hinweise
• UserDefaults: Automatische Synchronisation
• JSON-Codable: Arrays/Structs als Data speichern
• Typ-Sicherheit: Konstanten verhindern Tippfehler
• Migration: kCatalogInitializedKey für einmalige Setup-Logik
• Fallback: Immer Standardwerte bei nil/NaN
• Locale: Sprach-Codes mit Bindestrich (de-DE, nicht de_DE)

───────────────────────────────────────
AILO Handbuch – Kapitel 5.1 Settings Keys

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 5: Konfiguration

Seite 1 | AILO Lokalisierung v1.0

5.2 Lokalisierung
Configuration/Language/ • Deutsch/Englisch Übersetzungen

Übersicht
AILO verwendet das iOS/macOS Lokalisierungssystem mit Localizable.strings Dateien. Die
App unterstützt Deutsch (de) als Hauptsprache und Englisch (en) als Fallback. Alle UI-Texte
sind externalisiert und folgen einem konsistenten Key-Namensschema.

Datei Sprache Anzahl Strings
de.lproj/Localizable.strings Deutsch 🇩🇪 ~500
en.lproj/Localizable.strings English 🇬🇧 ~500

Key-Namensschema
Alle Lokalisierungs-Keys folgen einem hierarchischen Muster für konsistente Benennung
und einfache Zuordnung zu Views.

Pattern
<feature>.<view>.<element>[.<state|action|hint>]

Komponenten
Teil Beschreibung Beispiele
feature Feature-Bereich logs, mail, config, write, speak
view View/Screen-Name list, detail, editor, picker
element UI-Element title, field, button, label
state Zustandsmodifikator empty, loading, error, success
action Aktionsmodifikator save, delete, cancel, retry
hint Hilfetext/Tooltip placeholder, a11y, hint

Feature-Kategorien
Die Strings sind nach Features gruppiert mit MARK-Kommentaren in den Dateien.

Präfix Feature Dateien
common.* Globale UI-Texte Alle Views
app.* App-Shell/Navigation ContentView, Tabs
dashboard.* Dashboard DashboardView
logs.* Log-Liste LogsView, LogsListView
logDetail.* Log-Details TextLogDetailView
write.* Schreiben SchreibenView
speak.* Sprechen/Audio SprechenView
mail.* E-Mail (Legacy) MailComposer
app.mail.* E-Mail (Neu) MailView, MessageDetailView
config.* Einstellungen ConfigView
aiManager.* KI-Provider AIManagerView, AIEditor
aiEditor.* KI-Editor AIEditor
preprompts.* Pre-Prompts PrePromptManager
catalog.* Pre-Prompt-Katalog PrePromptCatalogView
categories.* Kategorien CategoriesView

AILO Handbuch | Teil 5: Konfiguration

Seite 2 | AILO Lokalisierung v1.0

Präfix Feature Dateien
store.* Datenspeicher DataStore
state.* / msg.* Zustände/Meldungen Global

Common Keys
Häufig verwendete globale Übersetzungen unter dem common.*-Präfix.

Key Deutsch English
common.ok OK OK
common.cancel Abbrechen Cancel
common.save Sichern Save
common.edit Bearbeiten Edit
common.done Fertig Done
common.delete Löschen Delete
common.close Schließen Close
common.back Zurück Back
common.yes Ja Yes
common.no Nein No
common.error Fehler Error
common.success Erfolg Success
common.loading Laden… Loading…
common.search Suchen Search
common.retry Erneut versuchen Retry

Beispiel-Strings

Feature: Logs
// Deutsch "logs.list.title" = "Alle Logs"; "logs.search.placeholder" = "Logs
durchsuchen"; "logs.empty" = "Noch keine Einträge"; "logs.action.new" = "Log
hinzufügen"; // English "logs.list.title" = "All Logs"; "logs.search.placeholder"
= "Search logs"; "logs.empty" = "No entries yet"; "logs.action.new" = "Add log";

Feature: Mail
// Deutsch "app.mail.action.reply" = "Antworten"; "app.mail.action.forward" =
"Weiterleiten"; "app.mail.folder.inbox" = "Posteingang"; "app.mail.folder.sent" =
"Gesendet"; // English "app.mail.action.reply" = "Reply";
"app.mail.action.forward" = "Forward"; "app.mail.folder.inbox" = "Inbox";
"app.mail.folder.sent" = "Sent";

Verwendung im Code

SwiftUI String(localized:)
// Einfacher Text Text(String(localized: "logs.list.title")) // Mit
Variablen Text(String(localized: "catalog.recipe.elements \(count)")) //
In Attributen .navigationTitle(String(localized: "config.nav.title"))

String Interpolation
// Key mit %@ Platzhalter "speak.entry.titleWithName" = "Transkript: %@";
// Verwendung String(format: NSLocalizedString("speak.entry.titleWithName",
comment: ""), name)

AILO Handbuch | Teil 5: Konfiguration

Seite 3 | AILO Lokalisierung v1.0

Dateistruktur
Configuration/ └── Language/ ├── de.lproj/ │ └──
Localizable.strings // Deutsch (Hauptsprache) └── en.lproj/
└── Localizable.strings // English (Fallback)

Guidelines
• Vollständige Sätze: Keine Konkatenation von Textfragmenten
• MARK-Kommentare: Feature-Gruppierung mit // MARK: -
• Datei-Referenz: Kommentar mit zugehörigen Swift-Dateien
• Konsistente Keys: Gleiches Pattern in allen Sprachen
• Plural-Handling: Später via String Catalog (.xcstrings)
• Accessibility: a11y-Suffix für VoiceOver-Texte

Technische Hinweise
• Bundle: Strings werden automatisch aus Bundle.main geladen
• Fallback: English als Base Localization bei fehlendem Key
• Encoding: UTF-8 mit \n für Zeilenumbrüche
• Escape: Anführungszeichen als \" escapen
• Semikolon: Jede Zeile endet mit ;
• Kommentare: /* */ oder // für Dokumentation
• Format-Specifier: %@, %d, %lld, %.1f für Variablen

───────────────────────────────────────
AILO Handbuch – Kapitel 5.2 Lokalisierung

Version 1.0 | Dezember 2025

AILO Handbuch | Teil 5: Konfiguration

Seite 1 | AILO Mail Account Config v1.0

5.3 Mail Account Configuration
Database/Models/MailModels.swift • E-Mail-Konto-Konfiguration

Übersicht
Die MailAccountConfig-Struktur definiert alle Parameter für E-Mail-Konten: IMAP/POP3-
Empfang, SMTP-Versand, Authentifizierung, Sync-Limits, Ordnerzuordnung und S/MIME-
Signierung. Die Konfiguration wird als JSON in UserDefaults persistiert.

Bereich Beschreibung
Account-Basis ID, Name, E-Mail-Adresse, Anzeigename, Reply-To
IMAP/POP3 Host, Port, Verschlüsselung, Benutzername, Passwort
SMTP Host, Port, Verschlüsselung, Benutzername, Passwort
Authentifizierung Password, OAuth2, App-Password
Sync Limits Initial, Refresh, Incremental
Special Folders Inbox, Sent, Drafts, Trash, Spam
S/MIME Signierung aktiviert, Zertifikat-ID
Verhalten Auto-Mark-Read, Intervall, Timeout, Logging

MailAccountConfig Struct
Codable, Identifiable, Equatable, Sendable Struct für vollständige Account-Konfiguration.

Account-Basis
Property Typ Beschreibung
id UUID Eindeutige Account-ID
accountName String Anzeigename im Account-Picker
displayName String? Absendername in E-Mails
emailAddress String E-Mail-Adresse
replyTo String? Optionale Reply-To Adresse

IMAP/POP3 Empfang
Property Typ Beschreibung
recvProtocol MailProtocol .imap oder .pop3
recvHost String IMAP/POP3 Server
recvPort Int Port (993=IMAPS, 143=IMAP)
recvEncryption MailEncryption .none, .sslTLS, .startTLS
recvUsername String Benutzername
recvPassword String? Passwort

SMTP Versand
Property Typ Beschreibung
smtpHost String SMTP Server
smtpPort Int Port (587=STARTTLS, 465=SSL)
smtpEncryption MailEncryption .none, .sslTLS, .startTLS
smtpUsername String SMTP Benutzername
smtpPassword String? SMTP Passwort

Enums

AILO Handbuch | Teil 5: Konfiguration

Seite 2 | AILO Mail Account Config v1.0

MailProtocol
• .imap – Internet Message Access Protocol
• .pop3 – Post Office Protocol v3

MailEncryption
• .none – Keine Verschlüsselung (nicht empfohlen)
• .sslTLS – Direktes SSL/TLS (Port 993/465)
• .startTLS – STARTTLS Upgrade (Port 143/587)

MailAuthMethod
• .password – Standard Passwort-Authentifizierung
• .oauth2 – OAuth2 Token-basiert
• .appPassword – App-spezifisches Passwort (Gmail, etc.)

Sync Limits
Konfigurierbare Limits für die E-Mail-Synchronisation zur Performance-Optimierung.

Property Typ Default Beschreibung
syncLimitInitial Int 200 Erster Sync
syncLimitRefresh Int 500 Vollständiger Sync
syncLimitIncremental Int 50 Inkrementeller Sync

Special Folders
Die Folders-Struktur definiert Server-Ordnernamen für Spezialordner. Automatische
Erkennung via FolderDiscoveryService.

Property Default Gmail-Beispiel
inbox "INBOX" INBOX
sent "Sent" [Gmail]/Sent Mail
drafts "Drafts" [Gmail]/Drafts
trash "Trash" [Gmail]/Trash
spam "Spam" [Gmail]/Spam

FolderDiscoveryService
• Automatische Erkennung via IMAP LIST + SPECIAL-USE Extension
• Fallback auf Name-Heuristik bei fehlender Server-Unterstützung
• Vorkonfigurierte Provider: Gmail, Outlook, Yahoo
• 60-Sekunden Debounce für wiederholte Discovery

S/MIME Signierung
Optionale E-Mail-Signierung mit S/MIME-Zertifikaten aus dem iOS Keychain.

Property Typ Beschreibung
signingEnabled Bool Signierung aktiviert (Default: false)
signingCertificateId String? Keychain-Referenz zum Zertifikat

P12-Import

AILO Handbuch | Teil 5: Konfiguration

• Import via File-Picker (.p12, .pfx)
• Passwort-geschützter Import
• Speicherung in iOS Keychain mit SecItemAdd

Verhaltenseinstellungen
Property Default Beschreibung
autoMarkAsRead true Beim Öffnen als gelesen markieren
checkIntervalEnabled false Automatische Prüfung aktiviert
checkIntervalMin nil (15) Prüfintervall in Minuten
connectionTimeoutSec 15 Verbindungs-Timeout (5-120s)
enableLogging false Verbindungsprotokoll aktivieren
oauthToken nil OAuth2-Token für OAuth-Auth

Persistierung
Accounts werden als JSON-Array in UserDefaults gespeichert.

Speicherung
// Key "mail.accounts" // UserDefaults Key // Laden guard let data =
UserDefaults.standard.data(forKey: "mail.accounts"), let accounts =
try? JSONDecoder().decode([MailAccountConfig].self, from: data) else {
return } // Speichern let data = try JSONEncoder().encode(accounts)
UserDefaults.standard.set(data, forKey: "mail.accounts")

MailEditor View
SwiftUI-View für Account-Bearbeitung mit Validierung und Verbindungstest.

Sections
• Account: Name, E-Mail, Display Name
• Incoming: Protokoll, Host, Port, Verschlüsselung, Credentials
• Outgoing: SMTP Host, Port, Verschlüsselung, Credentials
• Synchronization: Sync Limits (Initial, Refresh, Incremental)
• Folders: Special Folders mit Auto-Discovery
• Advanced: Auth, Timeout, Logging, Auto-Mark-Read
• S/MIME: Signierung, Zertifikat-Auswahl, P12-Import

Technische Hinweise
• Codable: JSON-Serialisierung für UserDefaults
• Sendable: Thread-sicher für async/await
• Validierung: Timeout 5-120s, Interval 1-120min
• Port-Defaults: 993 (IMAPS), 143 (IMAP), 587 (SMTP+STARTTLS), 465 (SMTPS)
• DAO-Sync: Special Folders werden in MailReadDAO persistiert
• Fallback: SMTP-Credentials auf IMAP-Credentials wenn leer

───────────────────────────────────────
AILO Handbuch – Kapitel 5.3 Mail Account Configuration

Version 1.0 | Dezember 2025

Seite 3 | AILO Mail Account Config v1.0

AILO Handbuch | Teil 6: Technologie-Stack

Seite 1 | AILO Technologie-Stack v1.0

Teil 6: Technologie-Stack
🛠 Plattform, Frameworks & Dependencies

Übersicht
AILO ist eine native iOS/macOS-App, entwickelt in Swift 5.9+ mit SwiftUI. Die Architektur
kombiniert moderne Apple-Frameworks mit Custom-Implementierungen für IMAP/SMTP-
Kommunikation und verwendet SQLite für die lokale Datenpersistenz.

📱 Plattform
Komponente Version / Details
iOS Deployment Target iOS 16.0+
macOS Deployment Target macOS 13.0+ (Catalyst)
Swift Version Swift 5.9+
Xcode Version Xcode 15.0+
Architecture arm64 (Apple Silicon), x86_64 (Intel)
App Store iOS App Store Ready

🎨 UI Framework
Framework Verwendung
SwiftUI 100% der UI (kein UIKit)
Combine Reactive Programming, Publisher/Subscriber
NavigationStack Navigation (iOS 16+)
@Observable iOS 17+ Observation (optional)
@StateObject View Model Lifecycle
@EnvironmentObject App-weites State Sharing

SwiftUI Patterns
• MVVM: ViewModels als @StateObject/@ObservedObject
• Repository Pattern: MailRepository als zentrale Datenschicht
• Factory Pattern: DAOFactory für DAO-Instanziierung
• Singleton: Shared Manager (PrePromptCatalogManager, RetryPolicy)

💾 Datenbank
Technologie Verwendung
SQLite3 Mail-Datenbank (direkte C-API)
DAO Pattern Data Access Objects für alle DB-Operationen
JSON (Codable) Logs, Pre-Prompts, Recipes, Cookbooks
UserDefaults App-Settings, Account-Konfiguration
Keychain Sensible Daten (Passwörter, API-Keys)

AILO Handbuch | Teil 6: Technologie-Stack

Seite 2 | AILO Technologie-Stack v1.0

SQLite Schema
• accounts – E-Mail-Account-Referenzen
• folders – Ordner-Metadaten
• msg_header – E-Mail-Header (From, Subject, Date, Flags)
• msg_body – E-Mail-Body (HTML, Text)
• attachments – Anhänge-Metadaten
• outbox – Ausgehende E-Mails Queue
• blob_meta, mime_parts, render_cache – Blob Storage

🎙 Audio & Speech
Framework Verwendung
AVFoundation Audio-Aufnahme und -Wiedergabe
AVAudioRecorder Mikrofon-Recording (.m4a Format)
AVAudioSession Audio Session Management
AVAudioPlayer Audio-Playback
Speech Framework Live-Spracherkennung
SFSpeechRecognizer On-Device Recognition (de-DE, en-US)

Audio Features
• Chunk-basierte Transkription für Live-Feedback
• Silence Detection (konfigurierbare Stille-Schwelle)
• On-Device Recognition (datenschutzfreundlich)
• M4A-Format für kompakte Speicherung

📧 Netzwerk
Protokoll/Framework Verwendung
URLSession HTTP/HTTPS für KI-APIs
IMAP (Custom) E-Mail-Empfang (IMAPConnection, IMAPCommands)
SMTP (Custom) E-Mail-Versand (SMTPClient, NIOSMTPClient)
SwiftNIO Async Networking (SMTP)
NIOSSL TLS/SSL für SMTP-Verbindungen
Network.framework TCP/TLS für IMAP

IMAP Implementation
• IMAPConnection.swift: Verbindungsmanagement
• IMAPCommands.swift: LOGIN, SELECT, FETCH, SEARCH, LIST, STORE
• IMAPParsers.swift: ENVELOPE, BODYSTRUCTURE, FLAGS Parsing
• IMAPConnectionPool.swift: Connection Pooling

SMTP Implementation
• SMTPClient.swift: Network.framework-basiert
• NIOSMTPClient.swift: SwiftNIO mit NIOSSL
• STARTTLS: In-Place TLS Upgrade
• AUTH LOGIN: Base64-kodierte Authentifizierung

AILO Handbuch | Teil 6: Technologie-Stack

Seite 3 | AILO Technologie-Stack v1.0

🤖 KI-Integration
Provider Endpoint
OpenAI /v1/chat/completions (GPT-4, GPT-3.5)
Ollama /api/chat, /api/generate (llama3, mistral, etc.)
Custom OpenAI-kompatible API Endpoints

AIClient Features
• Multi-Provider Support mit automatischem Fallback
• Pre-Prompt-System mit hierarchischem Katalog
• Rezept-basierte Prompt-Kombinationen
• Lokalisierte Fehlermeldungen

🔐 Sicherheit
Komponente Funktion
KeychainService Sichere Speicherung (Passwörter, API-Keys)
Security.framework Keychain-API, SecItemAdd/Query/Delete
S/MIME E-Mail-Signierung mit Zertifikaten
SMIMESigningService PKCS#7/CMS Signatur-Erstellung
KeychainCertificateService Zertifikat-Import (P12/PFX)
TLS 1.2/1.3 Verschlüsselte Verbindungen

📦 Dependencies
Externe Swift Packages via Swift Package Manager (SPM).

Package Version Verwendung
swift-nio 2.65.0+ Async Networking
swift-nio-ssl 2.26.0+ TLS/SSL für NIO
NIOCore – Event Loop, Channels
NIOPosix – POSIX Integration
NIOSSL – SSL Context, Handler

AILO Handbuch | Teil 6: Technologie-Stack

Seite 4 | AILO Technologie-Stack v1.0

📁 Projektstruktur
AILO_APP/
├── App/ # App Entry Point
├── Views/ # SwiftUI Views
│ ├── Dashboard/
│ ├── Logs/
│ ├── Mail/
│ ├── Schreiben/
│ ├── Sprechen/
│ ├── Configuration/
│ └── Shared/
├── Services/ # Business Logic
│ ├── AI/
│ ├── Audio/
│ ├── Mail/
│ │ ├── IMAP/
│ │ ├── SMTP/
│ │ ├── Sync/
│ │ └── Diagnostics/
│ └── Security/
├── Database/ # Data Layer
│ ├── DAO/
│ ├── Models/
│ ├── Schema/
│ └── Store/
├── Helpers/ # Utilities
│ ├── Parsers/
│ ├── Security/
│ ├── UI/
│ └── Utilities/
├── Configuration/ # Settings & Language
│ ├── Settings/
│ └── Language/
└── Resources/ # Assets, Plist

Technische Hinweise
• Keine externen UI-Frameworks: 100% SwiftUI
• Async/Await: Durchgängig moderne Concurrency
• Sendable: Thread-sichere Datenstrukturen
• @MainActor: UI-Thread-Sicherheit
• Codable: JSON-Serialisierung für alle Modelle
• Identifiable: UUID-basierte Entitäten
• Keine CocoaPods/Carthage: Nur SPM für Dependencies

───────────────────────────────────────
AILO Handbuch – Teil 6: Technologie-Stack

Version 1.0 | Dezember 2025

	AILO_Handbuch_1.0_Inhaltsverzeichnis
	AILO_Handbuch_1.1_App_Entry_Navigation
	AILO_Handbuch_1.2_Dashboard
	AILO_Handbuch_1.3_Logs_System
	AILO_Handbuch_1.4_Schreiben
	AILO_Handbuch_1.5_Sprechen
	AILO_Handbuch_1.6_Mail_Feature
	AILO_Handbuch_1.7_Konfiguration
	AILO_Handbuch_1.8_PrePrompt_Katalog
	AILO_Handbuch_1.9_Shared_Components
	AILO_Handbuch_2.1_KI_Integration
	AILO_Handbuch_2.2_Mail_Services
	AILO_Handbuch_2.3_IMAP_Implementation
	AILO_Handbuch_2.4_SMTP_Implementation
	AILO_Handbuch_2.5_PrePrompt_Management
	AILO_Handbuch_2.6_Audio_Speech
	AILO_Handbuch_2.7_Sicherheit
	AILO_Handbuch_3.1_Database_Schema
	AILO_Handbuch_3.2_DAO_Implementations
	AILO_Handbuch_3.3_DAO_Utilities
	AILO_Handbuch_3.4_Datenmodelle
	AILO_Handbuch_3.5_DataStore
	AILO_Handbuch_4.1_IMAP_MIME_Parser
	AILO_Handbuch_4.2_Utilities
	AILO_Handbuch_5.1_Settings_Keys
	AILO_Handbuch_5.2_Lokalisierung
	AILO_Handbuch_5.3_Mail_Account_Config
	AILO_Handbuch_6_Technologie_Stack

